INTRODUCTION TO STATISTICAL Machine Translation

Hervé Blanchon

Laboratoire LIG Équipe GETALP
herve.blanchon@univ-grenoble-alpes.fr

Foreword

The content of this presentation is based on
© Philipp Koehn
Statistical Machine Translation, Philipp Koehn Cambridge University Press, 2010, 433 p.
(several other P. Koehn's tutorials on SMT
Laurent Besacier \& others

- language model

Topics

Addressed	Not addressed
word-based models phrase-based models	integrating linguistic information tree-based models (hierarchical models)

E Further readings:
http://www.statmt.org

Outline

E Introduction
— Language models
W Word-Based Models
E Phrase-Based Models
— Decoding
E Evaluation
at the end of the module

INTRODUCTION

What is SMT about?

Learning an MT system to translate from f (source) to e (target) data using statistics

$$
p(e \mid f)
$$

or (Bayes)
$p(e \mid f) \propto p(f \mid e) p(e)$
What kind of data?
parallel bilingual corpora (source, target) usually f (Foreign) for the source, e (English) for the target monolingual corpora for the target usually e (English) for the target
Eor what purpose?
parallel bilingual corpora: learn how e translate into f a translation model
monolingual corpora: learn if an utterance u is acceptable in e a language model

How is a SMT from f to e built and used?

E Step 1: learning the models
© Step 2: using the models to translate

What Kind of Alignment?

Word alignments
E Phrase alignments
a phrase is a set of consecutive words
(a segment, a chunk

LANGUAGE MODELS

Language Models

Can answer the question

What is the probability that this string of words is correct? "The cat is dead" $\quad=>$ very good (≈ 1.0) "The cat is talkative" $\quad=>$ quite poor $(\approx$?) "Is the crowned cat" $\quad=>$ very poor (≈ 0.0)

Use

Automatic Speech Recognition
Machine translation
Language recognition
Optical Character Recognition

Language Models

Given a string of words $W=w_{1} w_{2} w_{3} w_{4} \ldots w_{n}$
chain rule

$$
p\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right)
$$

$$
=
$$

$p\left(w_{1}\right) p\left(w_{2} \mid w_{1}\right) p\left(w_{3} \mid w_{1}, w_{2}\right) \ldots p\left(w_{n} \mid w_{1}, w_{2}, \ldots, w_{n-1}\right)$
Markov assumption (use history of limited length)
\leftrightarrow Only the k preceding words belong to the history
Model of order k
Example: a model of order 1 (bigram)

$$
\begin{gathered}
p\left(w_{1}, w_{2}\right) \\
= \\
p\left(w_{1}\right) p\left(w_{2} \mid w_{1}\right)
\end{gathered}
$$

Estimate the n-grams Probabilities

B Collect frequencies of words and word sequences in very large corpus
Several million words
© Using "chain rule":

$$
p\left(w_{2} \mid w_{1}\right)=\frac{\operatorname{count}\left(w_{1}, w_{2}\right)}{\operatorname{count}\left(w_{1}\right)}
$$

Model size?

E For each n-gram, one must store a probability E If we assume a vocabulary of 20,000 words

Model	Max number of parameters
$0^{\text {th }}$ order (unigram)	20,000
$1^{\text {st }}$ order (bigram)	$20,000^{2}=400$ million
$2^{\text {nd }}$ order (trigram)	$20,000^{3}=8$ trillion
$3^{\text {rd }}$ order (4-gram)	$20,000^{4}=160$ quadrillion

Trigram LM are mostly used

Practical example

From a corpus of 275 million words written in English
newspapers such as "Wall Street Journal"

Model	Number of n-grams
1-gram	716,706
2-gram	$12,537,755$
3-gram	$22,174,483$

Quality of a language model

Entropy of a sequence $w_{1}, w_{2}, \ldots, w_{n}$

$$
H\left(w_{1}, w_{2}, \ldots, w_{n}\right)=-\sum_{w_{1} \ldots w_{n} \in \Sigma^{n}} p\left(w_{1} \ldots w_{n}\right) \log _{2} p\left(w_{1} \ldots w_{n}\right)
$$

E per word Entropy of a sequence $w_{1}, w_{2}, \ldots, w_{n}$
$\frac{1}{n} H\left(w_{1}, w_{2}, \ldots, w_{n}\right)=-\frac{1}{n} \sum_{w_{1} \ldots w_{n} \in \Sigma^{n}} p\left(w_{1} \ldots w_{n}\right) \log _{2} p\left(w_{1} \ldots w_{n}\right)$
\square Entropy of a language $L=\left\{w_{1}, w_{2}, \ldots, w_{n} \mid 0<n<\infty\right\}$

$$
H(L)=-\lim _{n \rightarrow \infty} \frac{1}{n} H\left(w_{1} \ldots w_{n}\right)
$$

- Perplexity

$$
\text { perplexity }(L)=2^{H(L)}
$$

A language model m is better than m^{\prime} if it assign lower perplexity to the test corpus $w_{1} \ldots w_{n}$

Example: 1-gram

— Training set [14 tokens ($1 / 14 \cong 0.0714$)]
\& there is a big house
i buy a house
they buy the new house

Model

$$
\begin{array}{|c|c|c|}
\hline p(\text { there })=0.0714 & p(\text { is })=0.0714 & p(a)=0.1429 \\
\hline p(\text { big })=0.0714 & p \text { (house })=0.2143 & p(i)=0.0714 \\
\hline p(\text { buy })=0.1429 & p(\text { they })=0.0714 & p(\text { the })=0.0714 \\
\hline p(\text { new })=0.0714 & & \\
\hline
\end{array}
$$

Test sentence S : they buy a big house

Example: 2-gram

E Training set

there is a big house
i buy a house
they buy the new house

Model

$$
\begin{array}{c|c|c}
p(\text { big } \mid \text { a })=0.5 & p(\text { is } \mid \text { there })=1 & p(\text { buy } \mid \text { they })=1 \\
\hline p(\text { house } \mid \text { a })=0.5 & p(\text { buy } \mid i)=1 & p(\text { a } \mid \text { buy })=0.5 \\
p(\text { new } \mid \text { the })=1 & p(\text { house } \mid \text { big })=1 & p(\text { the } \mid \text { buy })=0.5 \\
\hline p(a \mid \text { is })=1 & p(\text { house } \mid \text { new })=1 & p(\text { they }|<s\rangle)=0.333 \\
\hline p(\text { there }|<s\rangle)=0.333 & p(i|<s\rangle)=0.333 &
\end{array}
$$

Test sentence $S 1$: they buy a big house

$$
p(S)=\underbrace{0.333}_{\text {<s> they }} \times \underbrace{1}_{\text {they buy buy a }} \times \underbrace{0.5}_{\text {a big }} \times \underbrace{0.5}_{\text {big house }} \times \underbrace{1}=0.0833
$$

Problem of Unknown Events

E Training set
there is a big house
i buy a house
they buy the new house

Let sentence $S 2$
they buy a new house
The bigram " a new" has never been seen
$p(S 2)=0$?!
But the sentence is correct

Problem of Unknown Events

© Two types of "zeroes"
\& Unknown words
(Problem dealt with a label "UNKNOWN"
The probability $p(U N K N O W N)$ is estimated
Tend to over-estimate the probability
\& Smoothing mechanisms
↔ Unknown N-grams
Smoothing by giving them a low probability (but not zero!)
(Fall back (backoff) to a lower-order n-gram
\& Give a non-zero probability to un-observed events
(This is not a maximum likelihood estimate

WORD-BASED MODELS

Lexical Translation

How to translate a word \rightarrow look up in dictionary
\leftrightarrow Haus - house, building, home, household, shell
M Multiple translations
some more frequent than others
for instance: house, and building most common special cases: Haus of a snail is its shell

Note: In all lectures, we translate from a foreign language into English

Collect Statistics

E Look at a parallel corpus
here German text along with English translation

Translations of haus	Count
house	8000
building	1600
home	200
household	150
shell	50

Estimate Translation Probabilities

Lexical translation probability distribution p_{f} given a foreign word f for each English translation e

$$
\begin{aligned}
& \sum_{e} p_{f}(e)=1 \\
& \forall e: 0 \leq p_{f}(e) \leq 1
\end{aligned}
$$

- Maximum likelihood estimation in our case divide each count by sum of counts

$$
p_{f}(e)= \begin{cases}0.8 & \text { if } e=\text { house } \\ 0.16 & \text { if } e=\text { building } \\ 0.02 & \text { if } e=\text { home } \\ 0.015 & \text { if } e=\text { household } \\ 0.005 & \text { if } e=\text { shell }\end{cases}
$$

Alignment

E In a parallel text (or when we translate), we align words in one language with the words in the other

$\begin{array}{cccc}1 \\ \text { das } & \text { Haus } & \begin{array}{c}3 \\ \text { ist }\end{array} & \begin{array}{l}4 \\ \text { klein }\end{array}\end{array}$			
e	house	is	small
1	2	3	

Word positions are numbered 1-4

Alignment function

E Formalizing alignment with an alignment function
\leftrightarrow Mapping an English target word at position i to a German source word at position j
with a function $a: i \rightarrow j$
Example

1	2	3	4
das	Haus	ist	klein
the	house	is	small
	2		

S: $\{1 \rightarrow 1,2 \rightarrow 2,3 \rightarrow 3,4 \rightarrow 4\}$

Reordering

W Words may be reordered during translation
Example

One-to-Many Translation

A source word may translate into multiple target words

Example

$a:\{1 \rightarrow 1,2 \rightarrow 2,3 \rightarrow 3,4 \rightarrow 4,5 \rightarrow 4\}$

Dropping Words

Words may be dropped when translated
E Example
dropping the German article das

a $:\{1 \rightarrow 2,2 \rightarrow 3,3 \rightarrow 4\}$

Inserting Words

Words may be added during translation
Example
The English just does not have an equivalent in German We still need to map it to something: special null token

a : $\{1 \rightarrow 1,2 \rightarrow 2,3 \rightarrow 3,4 \rightarrow 0,5 \rightarrow 4\}$

IBM Model 1

E Generative model: break up translation process into smaller steps
IBM Model 1 only uses lexical translation
E Translation probability (a joint probability)
(from a foreign sentence $\boldsymbol{f}=\left(f_{1}, \ldots, f_{l_{f}}\right)$ of length l_{f}
(to an English sentence $e=\left(e_{1}, \ldots, e_{l_{e}}\right)$ of length l_{e}
with $a: j \rightarrow i$ an alignment function of each English word e_{j} to a foreign word f_{i}
$\leftrightarrow p(\boldsymbol{e}, a \mid \boldsymbol{f})=\frac{\epsilon}{\left(l_{f}+1\right)^{l_{e}}} \Pi_{j=1}^{l_{e}} t\left(e_{j} \mid f_{a(j)}\right)$
The parameter ϵ is a normalization constant

IBM Model 1 - Breakdown of the formula

EThe formula
$\Leftrightarrow p(\boldsymbol{e}, a \mid \boldsymbol{f})=\frac{\epsilon}{\left(l_{f}+1\right)^{l_{e}}} \prod_{j=1}^{l_{e}} t\left(e_{j} \mid f_{a(j)}\right)$
E can be broken down as follow:
core: product over the lexical probability for all l_{e} generated output words e_{j}
fraction before product: normalization
(adding the NULL token: $l_{f}+1$ input words

- $\left(l_{f}+1\right)^{l_{e}}$ alignments that map $l_{f}+1$ input words into l_{e} output words
(ϵ : normalization constant so that $p(e, a \mid f)$ is a proper probability distribution (the probability of all possible translations e and alignments a sum up to 1: $\sum_{e, a} p(\boldsymbol{e}, a \mid \boldsymbol{f})=1$)

IBM Model 1 - Example

The probability of $f=$ das Haus ist klein being translated into $e=$ the house is small given:

				das		Haus		ist		klein	
	a	3	4	e	$t(e \mid f)$						
das	Haus	ist	klein	the	0.7	house	0.8	is	0.8	small	0.4
				that	0.15	building	0.16	's	0.16	little	0.4
e	use	is	small	which	0.075	home	0.02	exists	0.02	short	0.1
1	2	3	4	who	0.05	household	0.015	has	0.015	minor	0.06
				this	0.025	shell	0.005	are	0.005	petty	0.04

is
\& $p(e, a \mid f)=\frac{\epsilon}{5^{4}} \times t($ the \mid das $) \times t($ house \mid Haus $) \times t($ is \mid ist $) \times t($ small \mid klein $)$
\& $p(e, a \mid f)=\frac{\epsilon}{5^{4}} \times 0.7 \times 0.8 \times 0.8 \times 0.4$
$p(e, a \mid f)=0.0029 \epsilon$

Learning Lexical Tanslation Models

Need to estimate the lexical translation probabilities $t(e \mid f)$ from a parallel corpus
... but we do not have the alignments
© Chicken and egg problem
if we had the alignments
(\rightarrow we could estimate the parameters of our generative model
if we had the parameters
\rightarrow we could estimate the alignments

Learning Lexical Translation Model (EM)

© Solution : Expectation Maximization (EM)
Expectation Maximization in a nutshell
\leftrightarrow an iterative learning method

1. initialize model parameters (e.g. uniform)
2. assign probabilities to the missing data
3. estimate model parameters from completed data

4 . iterate steps 2-3 until convergence

Expectation

Expectation of a random variables X
a set of values $x_{1}, x_{2}, \ldots, x_{n}$
a probability $p\left(x_{i}\right), \forall i \in[1 . . n]$

$$
E(X)=\sum_{i=1}^{n} p\left(x_{i}\right) x_{i}
$$

E Informal definition
the expected value of a random variable is intuitively the long-run average value of repetitions of the experiment it represents
Example: a dice
$\leftrightarrow 6$ equiprobable ($1 / 6$) resting positions ($1,2, \ldots 6$)
\& $E($ dice $)=\frac{1}{6} \times 1+\frac{1}{6} \times 2+\frac{1}{6} \times 3 \frac{1}{+6} \times 4+\frac{1}{6} \times 5+\frac{1}{6} \times 6=3.5$

EM Algorithm

E Initial step:

S all alignments are equally likely

Example of data

... the house
... ...

the blue house

... the flower
— Model learns
e.g., la is often aligned with the

EM Algorithm

\square After initial step : la and the more likely

B After next step : maison and house more likely

... the house

... the blue house

the flower

EM Algorithm

After next step : bleue and blue more likely

E After next step : fleur and flower more likely

... the house ...

EM Algorithm

Final step: convergence

E Hidden inherent structure revealed by EM parameter estimation from the aligned corpus
— Probabilities
$p($ la|the $)=0.453$
$p($ maison \mid house $)=0.876$
$p($ fleur \mid flower $)=0.334$
$p($ bleu \mid blue $)=0.563$

IBM Model 1 and EM

E EM Algorithm consists of two steps
Expectation-Step: Apply model to the data
\Leftrightarrow parts of the model are hidden (here: alignments)
\leftrightarrow using the model, assign probabilities to possible values

- probabilities of alignments
- Maximization-Step: Estimate model from data take assigned values as fact
collect counts (weighted by probabilities)
estimate model from counts
- count collection

E Iterate these steps until convergence

Probabilities

$p($ the \mid la $)=0.7, p($ house \mid la $)=0.05, p($ the \mid maison $)=0.1, p($ house \mid maison $)=0.8$

1 Alignments	$\boldsymbol{p}(\boldsymbol{e}, \boldsymbol{f} \mid \boldsymbol{a})$	$p(a \mid e, f)$
la maison \longrightarrow house	$\begin{aligned} & =p(\text { the } \mid \mathrm{la}) \times p \text { (house } \mid \text { maison }) \\ & =0.7 \times 0.8 \\ & =0.56 \end{aligned}$	$\begin{aligned} & =0.56 / 0.68 \\ & =0.824 \end{aligned}$
	$\begin{aligned} & =p(\text { the } \mid \text { la }) \times p(\text { house } \mid \text { la }) \\ & =0.7 \times 0.05 \\ & =0.035 \end{aligned}$	$\begin{aligned} & =0.035 / 0.68 \\ & =0.052 \end{aligned}$
	$\begin{aligned} & =p(\text { the } \mid \text { maison }) \times p \text { (house } \mid \text { maison }) \\ & =0.1 \times 0.8 \\ & =0.08 \end{aligned}$	$\begin{aligned} & =0.08 / 0.68 \\ & =0.118 \end{aligned}$
	$\begin{aligned} & =p(\text { house } \mid \text { la }) \times p \text { (the } \mid \text { maison }) \\ & =0.05 \times 0.1 \\ & =0.005 \end{aligned}$	$\begin{aligned} & =0.005 / 0.68 \\ & =0.007 \end{aligned}$

with $\boldsymbol{p}(\boldsymbol{a} \mid \boldsymbol{e}, \boldsymbol{f})=\boldsymbol{p}(\boldsymbol{e}, \boldsymbol{f} \mid \boldsymbol{a}) / \boldsymbol{p}(\boldsymbol{e} \mid \boldsymbol{f})$ [next slide]

$$
\text { and } \boldsymbol{p}(\boldsymbol{e} \mid \boldsymbol{f})=\sum_{\boldsymbol{a}} \boldsymbol{p}(\boldsymbol{e}, \boldsymbol{f} \mid \boldsymbol{a})=0.56+0.035+0.08+0.005=0.68
$$

counts

$$
\begin{array}{ll}
c(\text { the } \mid \text { la })=0.824+0.052 & c(\text { house } \mid \text { la })=0.052+0.007 \\
c(\text { the } \mid \text { maison })=0.118+0.007 & c(\text { house|maison })=0.824+0.118
\end{array}
$$

IBM Model 1 and EM - Expectation

We need to compute $p(a \mid \boldsymbol{e}, \boldsymbol{f}) \ldots$
the probability of an alignment a given a pair of source (e) and foreign (f) sentences (a conditional probability)
...Applying the chain rule:

$$
p(a \mid e, f)=\frac{p(e, f \mid a)}{p(e \mid f)}
$$

E ...Given that we already have the formula for $p(e, f \mid a)$ (definition of Model 1)
...We need to compute $p(e \mid f)$
[Koehn, 2010-p. 89]
corpus 2 sentences

1. blue house - maison bleue
2. house-maison
all possible alignments

Step 1. Set parameter values uniformly (2 words)
$t($ bleue \mid house $)=1 / 2$
$t($ maison \mid house $)=1 / 2$
$t($ bleue \mid blue $)=1 / 2$
$t($ maison \mid blue $)=1 / 2$
Step 2. Compute $p(a, f \mid e)$ for all alignments
$1.1 p(a, f \mid e)=1 / 2 \times 1 / 2=1 / 4(2 t=1 / 2$ words $)$

Repeat Step 2.

$1.1 p(a, f \mid e)=1 / 2 \times 1 / 4=1 / 8$
$1.2 p(a, f \mid e)=1 / 2 \times 3 / 4=3 / 8$
$2 \quad p(a, f \mid e)=3 / 4$

Repeat Step 3.

$1.1 p(a \mid e, f)=1 / 8 / 2 / 4=1 / 4$
$1.2 p(a \mid e, f)=3 / 8 / 2 / 4=3 / 4$
$2 \quad p(a \mid e, f)=1 / 2 / 1 / 2=1$

Repeat Step 4.

$t c($ bleue \mid house $)=1 / 4$
$t c($ maison \mid house $)=3 / 4+1=7 / 4$
$t c($ bleue|blue $)=3 / 4$
$t c($ maison \mid blue $)=1 / 4$

Repeat Step 4.

$t($ bleue|house $)=1 / 4 / 4 / 2=1 / 8$
$t($ maison|house $)=7 / 4 / 4 / 2=7 / 8$
$t($ bleue|blue $)=3 / 4 / 1=3 / 4$
$t($ maison \mid blue $)=1 / 4 / 1=1 / 4$

IBM Model 1 and EM - Example (cont.)

Repeating step 2-5 many times yields:
t (bleue|house) $=0.0001$
t (maison|house) $=0.9999$
$t($ bleue \mid blue $)=0.9999$
$t($ maison \mid blue $)=0.0001$

IBM Model 1 and EM - Pseudocode

```
Input: set of sentence pairs (e,f)
Output: translation prob. t(e|f)
    1: initialize t(e|f) uniformly
    2: while not converged do
    3: // initialize
    4: count(e|f)=0 for all e,f
    5: total(f)=0 for all }
    6: for all sentence pairs (e,f) do
    7: // compute normalization
    8: for all words e in e do
    9: s-total(e) = 0
10: for all words f}\mathrm{ in f do
11: s-total(e) += t(e|f)
12:
13: end for
```

// collect counts
for all words e in e do for all words f in f do
count $(e \mid f)+=t(e \mid f) / s-\operatorname{total}(e)$
total $(f)+=t(e \mid f) / s-\operatorname{total}(e)$
end for
end for
end for
// estimate probabilities
for all foreign words f do
for all English words e do
$t(e \mid f)=\operatorname{count}(e \mid f) / \operatorname{total}(f)$
end for
end for
end while

EM - Convergence

EThe data

The results

the house

the
book

book

\mathbf{e}	\mathbf{f}	initial	$\mathbf{1}^{\text {st }}$ it.	$\mathbf{2}^{\text {nd }}$ it.	$\mathbf{3}^{\text {rd }}$ it.	\ldots	final
the	das	0.25	0.5	0.6364	0.7479	\ldots	1
book	das	0.25	0.25	0.1818	0.1208	\ldots	0
house	das	0.25	0.25	0.1818	0.1313	\ldots	0
the	buch	0.25	0.25	0.1818	0.1208	\ldots	0
book	buch	0.25	0.5	0.6364	0.7479	\ldots	1
a	buch	0.25	0.25	0.1818	0.1313	\ldots	0
book	ein	0.25	0.5	0.4286	0.3466	\ldots	0
a	ein	0.25	0.5	0.5714	0.6534	\ldots	1
the	haus	0.25	0.5	0.4286	0.3466	\ldots	0
house	haus	0.25	0.5	0.5714	0.6534	\ldots	1

Perplexity

How well does the model fit the data?

E Perplexity: derived from probability of the training data according to the model
$\leftrightarrow \log _{2} P P=-\sum_{s} \log _{2} p\left(e_{s} \mid f_{s}\right)$
here e is the translation and f the source (classical notation)
Example ($\epsilon=1$)

	initial	$1^{\text {st }}$ it.	2 $^{\text {nd }}$ it.	3 $^{\text {rd }}$ it.	...	final
p(thehaus \| dashaus)	0.0625	0.1875	0.1905	0.1913	\ldots	0.1875
p(thebook \|dasbuch)	0.0625	0.1406	0.1790	0.2075	\ldots	0.25
p(abook \|einbuch)	0.0625	0.1875	0.1907	0.1913	\ldots	0.1875
perplexity	4095	202.3	153.6	131.6	\ldots	113.8

$\Delta \Delta$ perplexity is the convergence because of the convergence behavior of EM

Ensuring fluent output

E The translation model cannot decide between small and little
sometime one is preferred over the other:
small step: 2,070,000 occurrences in the Google index
(ittle step: 257,000 occurrences in the Google index
\square who is here to help? The language model
estimate how likely a string is English based on n-gram statistics

```
\& \(p(e)=p\left(e_{1}, e_{2}, \ldots, e_{n}\right)\)
    \(=p\left(e_{1}\right) p\left(e_{2} \mid e_{1}\right) \ldots p\left(e_{n} \mid e_{1}, e_{2}, \ldots, e_{n-1}\right)\)
    \(\approx p\left(e_{1}\right) p\left(e_{2} \mid e_{1}\right) \ldots p\left(e_{n} \mid e_{n-2}, e_{n-1}\right)\)
```


Noisy Channel Model

E In order to integrate a language model
Bayes Rule
$\operatorname{argmax}_{e} p(e \mid f)=\operatorname{argmax}_{e} \frac{p(f \mid e) p(e)}{p(f)}$ $\operatorname{argmax}_{e} p(f \mid e) p(e)$
here e is the translation and f the source (classical notation)

Higher IBM Models

IBM Model 1	lexical translation
	has a global maximum
IBM Model 2	adds absolute alignment (reordering) model
	modeling alignments with probability distribution translating foreign word at position i to English word at position j : $a\left(i \mid j, l_{e}, l_{f}\right)$
IBM Model 3	adds fertility model
	number of English words generated by a foreign word $f: n(\phi \mid f)$ where ϕ is the number of words f translates into
IBM Model 4	adds relative alignment (reordering) model
	relative to previously translated words
IBM Model 5	fixes deficiency
	Models 1-4 are deficient i.e. - some impossible translations have positive probability - multiple output words may be placed in the same position

IBM Model 2

\square Adding a model of alignment

1	2	3	4	5	
natürlich	$\begin{gathered} \text { ist } \\ \downarrow \end{gathered}$			klein \downarrow	lexical translation step
$\begin{array}{\|cc} \text { of } & \text { course } \\ \downarrow & \\ \downarrow & \\ \hline \end{array}$				small	alignment step
of course	the	house	is	small	
12	3	4	5	6	

IBM Model 3

Adding a model of fertility

Summary

E Lexical translation

- Alignment

Expectation Maximization (EM) Algorithm
© Noisy Channel Model

- IBM Models 1-5

Summary

E IBM Models were the pioneering models in statistical machine translation
E Introduced important concepts
\Leftrightarrow generative model
© EM training
\& reordering models
U Only used for niche applications as translation model
... but still in common use for word alignment
e.g., GIZA++ toolkit

WORD ALIGNMENT

Foreword

E Important notion introduced by IBM models
E

We will

develop this concept further
point out problems
discuss how word alignment quality is measured
present a method based on IBM models but fixes their most glaring problem: limitation to one-tomany alignments

The Task

\square Given a sentence pair, which words correspond to each other?

Word Alignment?

Example

- Is the English word does aligned to the German wohnt (verb) or nicht (negation) or neither?

Word Alignment?

How do the idioms kicked the bucket and biss ins grass match up?
to kick the bucket => to die

- biss (ge) \rightarrow bite (en)
- ins (ge) \rightarrow in the (en)
(gras (ge) \rightarrow grass (en)

Outside this exceptional context, bucket is never a good translation for grass

Measuring Word Aligment Quality

Manually align corpus with sure (S) and possible (P) alignment points ($S \subseteq P$). [reference]
E Common metric for evaluating computed word alignment A : Alignment Error Rate (AER)
$\leftrightarrow A E R(S, P ; A)=1-\frac{|A \cap S|+|A \cap P|}{|A|+|S|}$
$\square A E R=0$: alignment A matches all sure, any possible alignment points
B However: different applications require different precision/recall trade-offs

Word Alignment with IBM Models

EIBM Models create a many-to-one mapping
words are aligned using an alignment function a function may return the same value for different input (one-to-many mapping)
a function can not return multiple values for one input (no many-to-one mapping)

B But!!
Real word alignments have many-to-many mappings

English to German

Intersection of GIZA++ bidirectional alignments

Grow additional alignment points [Och and Ney, CompLing2003]

Growing Heuristic

grow-diag-final(e2f,f2e)
1: neighboring $=\{(-1,0),(0,-1),(1,0),(0,1),(-1,-1),(-1,1),(1,-1),(1,1)\}$
2: alignment $A=$ intersect(e2f,f2e); grow-diag(); final(e2f); final(f2e);
grow-diag()
1: while new points added do
2: for all English word $e \in\left[\mathbf{1} \ldots e_{n}\right]$, foreign word $f \in\left[\mathbf{1} \ldots f_{n}\right],(e, f) \in A$ do
3: for all neighboring alignment points $\left(\boldsymbol{e}_{\text {new }}, \boldsymbol{f}_{\text {new }}\right)$ do
4:
if ($\boldsymbol{e}_{\boldsymbol{n e w}}$ unaligned or $\boldsymbol{f}_{\text {new }}$ unaligned) and ($\boldsymbol{e}_{\text {new }}, \boldsymbol{f}_{\text {new }}$) \in union(e2f,f2e) then add ($\boldsymbol{e}_{\text {new }}, \boldsymbol{f}_{\text {new }}$) to A
end if
end for
end for
end while
final()
1: for all English word $\boldsymbol{e}_{\text {new }} \in\left[\mathbf{1} \ldots \boldsymbol{e}_{\boldsymbol{n}}\right]$, foreign word $\boldsymbol{f}_{\text {new }} \in\left[1 \ldots \boldsymbol{f}_{\boldsymbol{n}}\right]$ do
2: if ($\boldsymbol{e}_{\text {new }}$ unaligned or $\boldsymbol{f}_{\text {new }}$ unaligned) and ($\boldsymbol{e}_{\text {new }}, \boldsymbol{f}_{\text {new }}$) \in union(e2f,f2e) then
add ($\boldsymbol{e}_{\text {new }}, \boldsymbol{f}_{\text {new }}$) to A
end if
end for

PHRASE-BASED MODELS

Motivation

Word-Based Models translate words as atomic units

Phrase-Based Models translate phrases as atomic units

Advantages:
(many-to-many translation can handle non-compositional phrases
. use of local context in translation
(the more data, the longer phrases can be learned
"Standard Model", used by Google Translate and others

Case study

E Example

© Comments

Foreign input is segmented in phrases
any sequence of words, not necessarily linguistically motivated
Each phrase is translated into English
Phrases are reordered

Phrase-Based Translation Model

\# Major components of phrase-based model
phrase translation model $\phi(f \mid e)$
distance-based reordering model d
language model $p_{\mathrm{LM}}(e)$
© Bayes rule

$$
\mathrm{e}_{\text {best }}=\operatorname{argmax}_{e} p(e \mid f)=\operatorname{argmax}_{e} p(f \mid e) p_{\mathrm{LM}}(e)
$$

- Sentence f is decomposed into I phrases $\left(\bar{f}_{1}^{I}=\bar{f}_{1}, \ldots, \bar{f}_{I}\right)$
- For the model, $p(f \mid e)$ is further decomposed into

$$
p\left(\bar{f}_{1}^{I} \mid \bar{e}_{1}^{I}\right)=\prod_{i=1}^{I} \phi\left(\bar{f}_{i} \mid \bar{e}_{i}\right) d\left(\operatorname{start}_{i}-\text { end }_{i-1}-1\right)
$$

Breakdown of the formula

$$
p\left(\bar{f}_{1}^{I} \mid \bar{e}_{1}^{I}\right)=\prod_{i=1}^{I} \phi\left(\bar{f}_{i} \mid \bar{e}_{i}\right) d\left(\text { start }_{i}-\text { end }_{i-1}-1\right)
$$

each foreign phrase \bar{f}_{i} is translated into an English phrase \bar{e}_{i} all segmentation are equally likely
due to noisy channel, translation is inverted thus translation probability $\phi\left(\bar{f}_{i} \mid \bar{e}_{i}\right)$ is modelled as translation from English to foreign
reordering is handled by a distance-based reordering model (reordering relative to the previous point) [next slide]
start $_{i}$ position of the first word of the foreign input phrase that translates to the English phrase
end $_{i}$ position of the last word of that foreign phrase
(reordering computed as $\operatorname{start}_{i}-$ end $_{i-1}-1$

Distance-Based Reordering

phrase	translates	movement	distance
1	$1-3$	start at beginning	0
2	6	skip over 4-5	+2
3	$4-5$	move back over 4-6	-3
4	7	skip over 6	+1

- Scoring function: $d(x)=\alpha^{|x|}$ - exponential with distance

Phrase Translation Table: Example

- PTT for den Vorschlag learned from the EuroParl corpus

English	$\boldsymbol{\phi}(\boldsymbol{e} \mid \boldsymbol{f})$	English	$\boldsymbol{\phi}(\boldsymbol{e} \mid \boldsymbol{f})$
the proposal	0.6227	the suggestions	0.0114
's proposal	0.1068	the proposed	0.0114
a proposal	0.0341	the motion	0.0091
the idea	0.0250	the idea of	0.0091
this proposal	0.0227	the proposal,	0.0068
proposal	0.0205	its proposal	0.0068
of the proposal	0.0159	it	0.0068
the proposals	0.0159	\ldots	\ldots

lexical variation (proposal vs suggestions)
morphological variation (proposal vs proposals)
included function words (the, a, ...)
noise (it)

Linguistic Phrase?

Model is not limited to linguistic phrases
\& noun phrases, verb phrases, prepositional phrases, ...
Example non-linguistic phrase pair
\leftrightarrow spass am \rightarrow fun with the
Prior noun often helps with translation of preposition
Experiments show that limitation to linguistic phrases hurts quality

How to Learn the Translation Table?

Three stages

1. collect word alignments: using IBM or other
2. extract phrase pairs
3. score phrase pairs

Word alignments

Examples

Extracting Phrase Pairs

...consistent with word alignment

Example

assumes that / geht davon aus, dass

Consistency?

All words of the phrase pair have to align to each other

consistent OK

inconsistent
one alignment point outside

consistent OK
unaligned word
is fine

Consistency?

consistent

consistent

* A phrase pair (\bar{e}, \bar{f}) is consistent with an alignment A, if all words f_{1}, \ldots, f_{n} in \bar{f} that have alignment points in A have these with words e_{1}, \ldots, e_{m} in \bar{e} and vice versa:
(\bar{e}, \bar{f}) consistent with $A \Leftrightarrow$

$$
\begin{array}{ll}
& \forall e_{i} \in \bar{e}:\left(e_{i}, f_{j}\right) \in A \Longrightarrow f_{j} \in \bar{f} \\
\text { AND } & \forall f_{i} \in \bar{f}:\left(e_{i}, f_{j}\right) \in A \Longrightarrow e_{i} \in \bar{e} \\
\text { AND } & \exists e_{i} \in \bar{e}, f_{j} \in \bar{f}:\left(e_{i}, f_{j}\right) \in A
\end{array}
$$

Word Alignment Induced Phrases

(Maria, Mary), (no, did not), (daba una bofetada, slap), (a la, the), (bruja, witch), (verde, green)

Word Alignment Induced Phrases

(Maria, Mary), (no, did not), (daba una bofetada, slap), (a la, the), (bruja, witch), (verde, green)
(Maria no, Mary did not), (no daba una bofetada, did not slap), (daba una bofetada a la, slap the), (bruja verde, green witch)

Word Alignment Induced Phrases

(Maria, Mary), (no, did not), (daba una bofetada, slap), (a la, the), (bruja, witch), (verde, green)
(Maria no, Mary did not), (no daba una bofetada, did not slap), (daba una bofetada a la, slap the), (bruja verde, green witch)

- (Maria no daba una bofetada, Mary did not slap), (no daba una bofetada a la, did not slap the), (a la bruja verde, the green witch)

Word Alignment Induced Phrases

- (Maria, Mary), (no, did not), (daba una bofetada, slap), (a la, the), (bruja, witch), (verde, green)
- (Maria no, Mary did not), (no daba una bofetada, did not slap), (daba una bofetada a la, slap the), (bruja verde, green witch)
- (Maria no daba una bofetada, Mary did not slap), (no daba una bofetada a la, did not slap the), (a la bruja verde, the green witch)
\# (Maria no daba una bofetada a la, Mary did not slap the), (daba una bofetada a la bruja verde, slap the green witch)

Word Alignment Induced Phrases


```
# (Maria, Mary), (no, did not), (daba una bofetada, slap), (a la, the), (bruja, witch), (verde, green)
# (Maria no, Mary did not), (no daba una bofetada, did not slap), (daba una bofetada a la, slap the), (bruja
    verde, green witch)
# (Maria no daba una bofetada, Mary did not slap), (no daba una bofetada a la, did not slap the), (a la bruja
    verde, the green witch)
# (Maria no daba una bofetad a la, Mary did not slap the), (daba una bofetada a la bruja verde, slap the
    green witch)
* (no daba una bofetada a la bruja verde, did not slap the green witch)
# (Maria no daba una bofetada a la bruja verde, Mary did not slap the green witch)
```


Scoring Phrase Translations

Phrase pair extraction:
collect all phrase pairs from the data
Phrase pair scoring:
assign probabilities to phrase translations

- probability distribution of phrase pairs: $\phi(\bar{f}, \bar{e})$

Score by relative frequency:

$$
\phi(\bar{f}, \bar{e})=\frac{\operatorname{count}(\bar{e}, \bar{f})}{\sum_{\bar{f}_{i}} \operatorname{count}\left(\bar{e}, \bar{f}_{i}\right)}
$$

Size of the Phrase Table

E Comment

\& Phrase translation table typically bigger than corpus
... even with limits on phrase lengths (e.g., max 7 words)

Too big to store in memory?

\leftrightarrow Solution for training
extract to disk, sort, construct for one source phrase at a time
Solutions for decoding
on-disk data structures with index for quick look-ups

- suffix arrays to create phrase pairs on demand

Reordering

\square Several options

Monotone translation, i.e. do not allow any reordering
(worse translations
Limiting reordering (to movement over max. number of words) helps
\leftrightarrow Distance-based reordering cost
(moving a foreign phrase over n words: cost ω^{n}
Lexicalized reordering model

Log-linear Models

- IBM Models provided mathematical justification for factoring components (features) together
$\Leftrightarrow p_{\mathrm{LM}} \times p_{\mathrm{D}} \times p_{\mathrm{TM}}$
(Language Model, Translation Model, Distortion)
E The models (features) may be weighted
$\Leftrightarrow p_{\mathrm{LM}}^{\lambda_{\mathrm{LM}}} \times p_{\mathrm{D}}^{\lambda_{\mathrm{D}}} \times p_{\mathrm{TM}}^{\lambda_{\mathrm{TM}}}$
Many components (features) p_{i} with weights λ_{i}
$\Leftrightarrow \prod_{i} p_{i}^{\lambda_{i}}=\exp \left(\sum_{i} \lambda_{i} \log \left(p_{i}\right)\right)$
$\Leftrightarrow \log \prod_{i} p_{i}^{\lambda_{i}}=\sum_{i} \lambda_{i} \log \left(p_{i}\right)$

Log- Linear Model

\square Such a weighted model is a log-linear model:

$$
p(x)=\exp \sum_{i=1}^{n} \lambda_{i} h_{i}(x)
$$

E Our feature functions
number of feature function $n=3$
random variable $x=(e, f$, start, end $)$
feature function $h 1=\log \phi$
feature function $h 2=\log d$
feature function $h 3=\log p_{\mathrm{LM}}$

Knowledge Sources (features)

Q Quite a lot:

language model
reordering (distortion) model
phrase translation model
word translation model
word count
phrase count
drop word feature
phrase pair frequency
additional language models
additional features

Tuning Feature Weights

E Goal

\leftrightarrow for each component (feature) p_{i}; determine its weight λ_{i}, i.e. the contribution of p_{i}

Methods
manual setting of weights: try a few, take best
automate this process: learn weights
Learn weights
set aside a development corpus
set the weights, so that optimal translation performance on this development corpus is achieved
requires automatic scoring method (e.g., BLEU)

Feature Weights Learning

Discriminative vs. Generative Models

- Generative models

translation process is broken down to steps
each step is modeled by a probability distribution each probability distribution is estimated from the data by maximum likelihood
— Discriminative models model consist of a number of features (e.g. the language model score)
each feature has a weight, measuring its value for judging a translation as correct
feature weights are optimized on development data, so that the system output matches correct translations as close as possible

Discriminative Training

Training set (development set)
$\$$ different from original training set
\leftrightarrow small (maybe 1000 sentences)
must be different from test set
— Current model trans/ates this development set
\& n-best list of translations ($n=100,10000$)
\leftrightarrow translations in n-best list can be scored
Feature weights are adjusted
\square n-best list generation and feature weight adjustment repeated for a number of iterations

Methods to Adjust Feature Weights

Maximum entropy [Och and Ney, ACL2002]
match expectation of feature values of model and data
Minimum error rate training [Och, ACL2003]
try to rank best translations first in n-best list
can be adapted for various error metrics, even BLEU
© Ordinal regression [Shen et al., NAACL2004]
separate k worst from the k best translations

Summary

B Phrase Model
Training the model
\leftrightarrow word alignment
phrase pair extraction
\leftrightarrow phrase pair scoring
\square Log linear model
sub-models as feature functions
\& lexical weighting
\leftrightarrow word and phrase count features
\square EM training of the phrase model

DECODING

The Task

© A mathematical model for translation

B Find the best scoring translation $\mathrm{e}_{\text {best }}$ according to the features and their respective weights

$$
\mathrm{e}_{\mathrm{best}}=\operatorname{argmax}_{\mathrm{e}} p(\mathrm{e} \mid \mathrm{f})
$$

© A very hard problem
NP-complet [Knight 1999]
i.e. examining all possible translations, scoring them, and picking the best is computationally too expensive even for a sentence of modest length

- In practice
heuristic search methods
© Two types of error
the most probable translation is bad: fix de model
search does not find the most probable translation: fix the search
D Decoding is evaluated by search errors, not quality of translation although these are often correlated

Translating a Sentence

E Input sentence to be translated in English

Translating a Sentence

Pick a phrase in the input, translate it

Translating a Sentence

B Pick a phrase and translate
possible skip to accommodate some features of the model
"negation before the verb in English"

Translating a Sentence

EGo on...

Translating a Sentence

E ... until every source phrase is translated

Computing Translation Probability

E Probabilistic model

$$
\mathrm{e}_{\mathrm{best}}=\operatorname{argmax}_{\mathrm{e}} \prod_{i=1}^{I} \phi\left(\bar{f}_{i} \mid \bar{e}_{i}\right) d\left(\operatorname{start}_{i}-\text { end }_{i-1}-1\right) p_{\mathrm{LM}}(e)
$$

© Score is computed incrementally for each partial hypothesis
© Components
Phrase translation Picking phrase \bar{f}_{i} to be translated as a phrase \bar{e}_{i}
\rightarrow look up score $\phi\left(\bar{f}_{i} \mid \bar{e}_{i}\right)$ from phrase translation table
Reordering Previous phrase ended in end d_{i-1}, current phrase starts at start ${ }_{i}$
\rightarrow compute $d\left(\right.$ start $_{i}-$ end $\left._{i-1}-1\right)$
Language model For n-gram model, need to keep track of last $n-1$ words
\rightarrow compute score $p_{\mathrm{LM}}\left(w_{i} \mid w_{i-(n-1)}, \ldots, w_{i-1}\right)$ for added words w_{i}

Translation Options

B Many translation options to choose from (search graph) in Europarl phrase table: 2727 matching phrase pairs for this sentence
by pruning to the top 20 per phrase, 202 translation options remain

Translation Options

- The machine translation decoder does not know the right answer
picking the right translation options
arranging them in the right order
\rightarrow Search problem solved by heuristic beam search

Decoding: Precompute Translation options

© consult phrase translation table for all input phrases

Decoding: Precompute Translation options

| 1 |
| :--- | :--- | :--- |

E initial hypothesis: no input words covered, no output produced

Decoding: Precompute Translation options

- pick any translation option, create new hypothesis

Decoding: Precompute Translation options

© create hypotheses for all other translation options

Decoding: Precompute Translation options

巴 also create hypotheses from created partial hypothesis

Decoding: Precompute Translation options

\# backtrack from highest scoring complete hypothesis

Computational complexity

The suggested process creates exponential number of hypothesis
Machine translation decoding is NP-complete
Reduction of search space:
recombination (risk-free)
pruning (risky)

Recombination

Uwo hypothesis paths lead to two matching hypotheses
same number of foreign words translated
same English words in the output
different scores

W Worse hypothesis is dropped

Recombination

© Two hypothesis paths lead to hypotheses indistinguishable in subsequent search
same number of foreign words translated
same last two English words in output (assuming trigram language model)
same last foreign word translated
different scores

■ Worse hypothesis is dropped

Restrictions on Recombination

\pm
 Translation model

Phrase translation independent from each other
\rightarrow no restriction to hypothesis recombination

Language model

Last $n-1$ words used as history in n-gram language model to compute the probability of word n
\rightarrow recombined hypotheses must match in their last $n-1$ words
Reordering model
Distance-based reordering model based on distance to end position of previous input phrase
\rightarrow recombined hypotheses must have that same end position
\square Other feature function
\rightarrow may introduce additional restrictions

Pruning

E Organize hypotheses in stacks
same source words covered
same number of source words covered
same number of target words translated

- Compare the hypotheses in stacks ; remove the bad ones
histogram pruning: keep the k best hypotheses for each cell (eg, $n=100$)
- Computational time complexity of decoding with histogram pruning (O (max stack size \times translation options \times sentence length)
Number of translation options is linear with sentence length, hence:
(O (max stack size \times sentence length ${ }^{2}$)
Quadratic complexity
threshold pruning: keep the hypotheses that have a score equal to $\alpha \times$ best score (score of the best hypothesis) $(\alpha<1)$

Pruning: Stacks Based on previous words translated

Hypothesis expansion in a stack decoder
translation option is applied to hypothesis
new hypothesis is dropped into a stack further down

What About Reordering?

Limiting reordering to maximum reordering distance

Typical reordering distance 5-8 words
\leftrightarrow depending on language pair
\leftrightarrow larger reordering limit hurts translation quality
E Reduces complexity to linear
O (max stack size \times sentence length)
Speed / quality trade-off by setting maximum stack size

What About Translating "Easy Phrases"?

B Balance current cost with future cost estimate
\leftrightarrow how expensive is translation of rest of sentence?

- Optimistic
$\$$ choose cheapest translation options
Cost for each translation option
translation model: cost known
language model: output words known, but not context
\rightarrow estimate without context
reordering model: unknown, ignored for future cost estimation

Beam Search

Described algorithm...
\& ...resembles the one of beam of light that follows the presumably best hypothesis path, but with a certain width it also illuminates neighboring hypotheses that differ not to much from the best one
\& Hence the name!
Other algorithms for decoding
A* search
Greedy hill-climbing
↔ Using finite state transducers (standard toolkits)

SUMMARY

Summary

Translation process: produce output left to right
ETranslation options
■ Decoding by hypothesis expansion
Reducing search space
< recombination
\& pruning (requires future cost estimate)

- Other decoding algorithms

