INTRODUCTION TO STATISTICAL MACHINE TRANSLATION

Hervé Blanchon

Laboratoire LIG Équipe GETALP

herve.blanchon@univ-grenoble-alpes.fr

Foreword

The content of this presentation is based on

Philipp Koehn

- Statistical Machine Translation, Philipp Koehn Cambridge University Press, 2010, 433 p.
- several other P. Koehn's tutorials on SMT
- Laurent Besacier & others
 - language model

🛃 Topics

Addressed	Not addressed			
word-based models	integrating linguistic information			
phrase-based models	tree-based models (hierarchical models)			

http://www.statmt.org

Outline

E Introduction

- E Language models
- Word-Based Models
- Phrase-Based Models
- 🛃 Decoding
- Evaluation
 - at the end of the module

INTRODUCTION

What is SMT about?

- Learning an MT system to translate from *f* (source) to *e* (target) data using statistics
- ♦ p(e|f)

Or (Bayes)

- $p(\boldsymbol{e}|\boldsymbol{f}) \propto p(\boldsymbol{f}|\boldsymbol{e})p(\boldsymbol{e})$
- What kind of data?
 - parallel bilingual corpora (source, target)
 - usually *f* (Foreign) for the source, *e* (English) for the target
 - Monolingual corpora for the target
 - usually e (English) for the target
- **For what purpose?**
 - parallel bilingual corpora: learn how *e* translate into *f*
 - a translation model
 - monolingual corpora: learn if an utterance $m{u}$ is acceptable in $m{e}$
 - a language model

How is a SMT from **f** to **e** built and used?

- **Step 1**: learning the models
- **Step 2**: using the models to translate

What Kind of Alignment?

- Word alignments
- 🛃 Phrase alignments
 - a phrase is a set of consecutive words
 - a segment, a chunk

Let's see!

LANGUAGE MODELS

Language Models

Can answer the question

- What is the probability that this string of words is correct?
 - "The cat is dead"
 - "The cat is talkative"
- "Is the crowned cat"
- \Rightarrow very good (≈ 1.0)
- => quite poor (≈ ?)
- => very poor (≈ 0.0)

🛃 Use

- Automatic Speech Recognition
- Machine translation
- Language recognition
- Optical Character Recognition

Language Models

Given a string of words $W = w_1 w_2 w_3 w_4 \dots w_n$ Schain rule $p(W_1, W_2, W_3, \dots, W_n)$ $p(w_1)p(w_2|w_1)p(w_3|w_1,w_2) \dots p(w_n|w_1,w_2,\dots,w_{n-1})$ Markov assumption (use history of limited length) Only the k preceding words belong to the history Model of order k Example: a model of order 1 (bigram) $p(w_1, w_2)$ $p(w_1)p(w_2|w_1)$

Estimate the n-grams Probabilities

- Collect frequencies of words and word sequences in very large corpus
 - Several million words
- Using "chain rule":

$$p(w_2|w_1) = \frac{\operatorname{count}(w_1, w_2)}{\operatorname{count}(w_1)}$$

For each n-gram, one must store a probability If we assume a vocabulary of 20,000 words

Model	Max number of parameters
0 th order (unigram)	20,000
1 st order (bigram)	$20,000^2 = 400$ million
2 nd order (trigram)	$20,000^3 = 8$ trillion
3 rd order (4-gram)	$20,000^4 = 160$ quadrillion

Practical example

Erglish From a corpus of 275 million words written in

newspapers such as "Wall Street Journal"

Model	Number of n-grams			
1-gram	716,706			
2-gram	12,537,755			
3-gram	22,174,483			

Quality of a language model

Entropy of a sequence
$$w_1, w_2, \dots, w_n$$

$$H(w_1, w_2, \dots, w_n) = -\sum_{w_1 \dots w_n \in \Sigma^n} p(w_1 \dots w_n) \log_2 p(w_1 \dots w_n)$$

$$per \text{ word Entropy of a sequence } w_1, w_2, \dots, w_n$$

$$\frac{1}{n} H(w_1, w_2, \dots, w_n) = -\frac{1}{n} \sum_{w_1 \dots w_n \in \Sigma^n} p(w_1 \dots w_n) \log_2 p(w_1 \dots w_n)$$

$$let \text{ Entropy of a language } L = \{w_1, w_2, \dots, w_n | 0 < n < \infty\}$$

$$H(L) = -\lim_{n \to \infty} \frac{1}{n} H(w_1 \dots w_n)$$

📕 Perplexity

 $perplexity(L) = 2^{H(L)}$

A language model m is better than m' if it assign lower perplexity to the test corpus $w_1 \dots w_n$

Example: 1-gram

Training set [14 tokens $(1/_{14} \cong 0.0714)$]

- there is a big house
- < i buy a house
- *It they buy the new house*

🛃 Model

p(there) = 0.0714	p(is) = 0.0714	p(a) = 0.1429
p(big) = 0.0714	p(house) = 0.2143	p(i) = 0.0714
p(buy) = 0.1429	p(they) = 0.0714	p(the) = 0.0714
p(new) = 0.0714		

E Test sentence *S*: *they buy a big house*

 $< p(S) = 0.0714 \times 0.1429 \times 0.0714 \times 0.1429 \times 0.2143 = 0.0000231$

they buy a big house

Example: 2-gram

🛃 Training set

- *there is a big house*
- 🤞 i buy a house
- *they buy the new house*

🛃 Model

p(big a) = 0.5	p(is there) = 1	p(buy they) = 1
p(house a) = 0.5	p(buy i) = 1	p(a buy) = 0.5
p(new the) = 1	p(house big) = 1	p(the buy) = 0.5
p(a is) = 1	p(house new) = 1	p(they < s >) = 0.333
p(there < s >) = 0.333	p(i < s >) = 0.333	

E Test sentence *S*1: *they buy a big house*

 $p(S) = 0.333 \times 1 \times 0.5 \times 0.5 \times 1 = 0.0833$

<s> they they buy buy a a big big house

Problem of Unknown Events

🛃 Training set

- *there is a big house*
- 🤞 i buy a house
- *they buy the new house*

Let sentence S2

- *they buy a new house*
- The bigram "a new" has never been seen

$$p(S2) = 0 ?!$$

Sut the sentence is correct

Problem of Unknown Events

Two types of "zeroes"

🍯 Unknown words

- Problem dealt with a label "UNKNOWN"
- The probability p(UNKNOWN) is estimated
- Tend to over-estimate the probability
 - Smoothing mechanisms

Solution Strategy Unknown N-grams

- Smoothing by giving them a low probability (but not zero!)
- Fall back (backoff) to a lower-order *n*-gram

$\langle\!\!\langle\!\!\rangle$ Give a non-zero probability to un-observed events

This is not a maximum likelihood estimate

WORD-BASED MODELS

Lexical Translation

- How to translate a word \rightarrow look up in dictionary
 - ✓ Haus house, building, home, household, shell
- Multiple translations
 - some more frequent than others
 - for instance: house, and building most common
 - special cases: Haus of a snail is its shell

<u>Note</u>: In all lectures, we translate from a foreign language into English

Collect Statistics

Look at a parallel corpus

here German text along with English translation

Translations of haus	Count
house	8000
building	1600
home	200
household	150
shell	50

Estimate Translation Probabilities

Lexical translation probability distribution p_f given a foreign word f for each English translation e

$$\leq \sum_e p_f(e) = 1$$

- $\boldsymbol{\leqslant} \ \forall e: 0 \leq p_f(e) \leq 1$
- Maximum likelihood estimation
 - in our case divide each count by sum of counts

Alignment

In a parallel text (or when we translate), we align words in one language with the words in the other

Word positions are numbered 1–4

Alignment function

Reordering

Words may be reordered during translation

🛃 Example

One-to-Many Translation

Dropping Words

Words may be dropped when translated

🛃 Example

dropping the German article das

Inserting Words

Words may be added during translation

🛃 Example

- The English just does not have an equivalent in German
- Solution We still need to map it to something: special null token

IBM Model 1

- Generative model: break up translation process into smaller steps
 - IBM Model 1 only uses lexical translation
- E Translation probability (*a joint probability*)
 - from a foreign sentence $f = (f_1, ..., f_{l_f})$ of length l_f
 - \mathbf{k} to an English sentence $\mathbf{e} = (\mathbf{e}_1, \dots, \mathbf{e}_{l_o})$ of length $l_{\mathbf{e}}$
 - with $a: j \rightarrow i$ an alignment function of each English word e_i to a foreign word f_i

$$p(\boldsymbol{e}, a | \boldsymbol{f}) = \frac{\epsilon}{(l_f + 1)^{l_e}} \prod_{j=1}^{l_e} t(e_j | f_{a(j)})$$

The parameter ϵ is a normalization constant

IBM Model 1 – Breakdown of the formula

🛃 The formula

$$p(\boldsymbol{e}, a | \boldsymbol{f}) = \frac{\epsilon}{(l_f + 1)^{l_e}} \prod_{j=1}^{l_e} t(e_j | f_{a(j)})$$

- can be broken down as follow:
 - core: product over the lexical probability for all *l_e* generated output words *e_i*
 - fraction before product: normalization
 - adding the NULL token: l_f + 1 input words
 - $(l_f + 1)^{l_e}$ alignments that map $l_f + 1$ input words into l_e output words
 - ϵ : normalization constant so that p(e, a | f) is a proper probability distribution (the probability of all possible translations e and alignments a sum up to 1: $\sum_{e,a} p(e, a | f) = 1$)

IBM Model 1 – Example

The probability of f = das Haus ist klein being translated into e = the house is small given:

a 1 2 3 4			da	as	Haus		is	t	kle	in	
			е	t(e f)	е	t(e f)	е	t(e f)	е	t(e f)	
das	Haus house	ist is 3	ist klein is small 3 4	the	0.7	house	0.8	is	0.8	small	0.4
the				that	0.15	building	0.16	's	0.16	little	0.4
				which	0.075	home	0.02	exists	0.02	short	0.1
				who	0.05	household	0.015	has	0.015	minor	0.06
				this	0.025	shell	0.005	are	0.005	petty	0.04

📕 is

 $\oint p(e, a|f) = \frac{\epsilon}{5^4} \times t(\text{the}|\text{das}) \times t(\text{house}|\text{Haus}) \times t(\text{is}|\text{ist}) \times t(\text{small}|\text{klein})$

$$p(e,a|f) = 0.0029\epsilon$$

6

Learning Lexical Tanslation Models

- Need to estimate the lexical translation probabilities t(e|f) from a parallel corpus
 - … but we do not have the alignments
- Chicken and egg problem
 - if we had the alignments
 - \Rightarrow \rightarrow we could estimate the parameters of our generative model
 - if we had the parameters
 - we could estimate the alignments

Learning Lexical Translation Model (EM)

- Solution : Expectation Maximization (EM)
- Expectation Maximization in a nutshell
- an iterative learning method
- 1. initialize model parameters (e.g. uniform)
- 2. assign probabilities to the missing data
- 3. estimate model parameters from completed data
- 4. iterate steps 2–3 until convergence

Expectation

Expectation of a random variables X

- \leq a set of values x_1, x_2, \dots, x_n
- Solution of the appropriate probability $p(x_i), \forall i \in [1..n]$ $E(X) = \sum_{i=1}^n p(x_i) x_i$
- 🛃 Informal definition
 - the expected value of a random variable is intuitively the long-run average value of repetitions of the experiment it represents
- 🛃 Example: a dice
 - \leq 6 equiprobable (1/6) resting positions (1, 2, ... 6)

EM Algorithm

E Initial step:

- all alignments are equally likely
- 🛃 Example of data

🛃 Model learns

e.g., la is often aligned with the

EM Algorithm

EM Algorithm

After next step : fleur and flower more likely

EM Algorithm

Final step: convergence

Hidden inherent structure revealed by EM

🛃 Probabilities

p(la|the) = 0.453 p(fleur|flower) = 0.334

 $p(maison|house) = 0.876 \quad p(bleu|blue) = 0.563$

IBM Model 1 and EM

- EM Algorithm consists of two steps
- Expectation-Step: Apply model to the data
 - parts of the model are hidden (here: alignments)
 - using the model, assign probabilities to possible values
 - = probabilities of alignments
- Maximization-Step: Estimate model from data
 - take assigned values as fact
 - collect counts (weighted by probabilities)
 - estimate model from counts
 - 🜲 🛛 = count collection

Iterate these steps until convergence

Probabilities

p(the|la) = 0.7, p(house|la) = 0.05, p(the|maison) = 0.1, p(house|maison) = 0.8

📙 Alignments	p(e, f a)	p(a e,f)					
la ● the maison ● house	$= p(\text{the} \text{la}) \times p(\text{house} \text{maison})$ = 0.7×0.8 = 0.56	= 0.56/0.68 = 0.824					
la the maison house	$= p(\text{the} \text{la}) \times p(\text{house} \text{la})$ = 0.7×0.05 = 0.035	= 0.035/0.68 = 0.052					
la the maison house	= $p(\text{the} \text{maison}) \times p(\text{house} \text{maison})$ = 0.1×0.8 = 0.08	= 0.08/0.68 = 0.118					
la the maison house	$= p(\text{house} \text{la}) \times p(\text{the} \text{maison})$ = 0.05×0.1 = 0.005	= 0.005/0.68 = 0.007					
with $p(a e, f) = p(e, f a)/p(e f)$ [next slide]							

and $p(e|f) = \sum_{a} p(e, f|a) = 0.56 + 0.035 + 0.08 + 0.005 = 0.68$

counts

- **\$**

c(the|la) = 0.824 + 0.052 c(house|la) = 0.052 + 0.007

c(the|maison) = 0.118 + 0.007 c(house|maison) = 0.824 + 0.118

IBM Model 1 and EM – Expectation

- We need to compute p(a|e, f)...
 - the probability of an alignment *a* given a pair of source
 (*e*) and foreign (*f*) sentences (a conditional probability)
- …Applying the chain rule:

 $p(a|e,f) = \frac{p(e,f|a)}{p(e|f)}$

- Given that we already have the formula for p(e, f | a) (definition of Model 1)
- \blacksquare ...We need to compute p(e|f)
 - < [Koehn, 2010 p. 89]

	co 2 s	rpus sentences	1. 2.	blue house house – ma	e – maison bleue aison		all p alig	pos: nm	sible ents	n	blue naison	house	blue maison	house	hou mais	son
ample		Step 1 . Set t(bleue ho t(maison h t(bleue blu t(maison h	para use iou ie) olue	ameter values $p(x) = \frac{1}{2}$ $se) = \frac{1}{2}$ $se) = \frac{1}{2}$ $e) = \frac{1}{2}$	s uniformly (2 word	/ (2 words)					1.	1	1.	2	2	
1 – Exa		Step 2. Compute $p(a, f e)$ for all alignments 1.1 $p(a, f e) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4} (2 \text{ t}=\frac{1}{2} \text{ words})$ 1.2 $p(a, f e) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4} (2 \text{ t}=\frac{1}{2} \text{ words})$ 2 $p(a, f e) = \frac{1}{2} (1 \text{ t}=\frac{1}{2} \text{ word})$				Repeat Step 2. 1.1 $p(a, f e) = \frac{1}{2} \times \frac{1}{4} = \frac{1}{8}$ 1.2 $p(a, f e) = \frac{1}{2} \times \frac{3}{4} = \frac{3}{8}$ 2 $p(a, f e) = \frac{3}{4}$						→				
nd EV		Step 3. Normalize $p(a, f e)$ to yield $p(a e, f)$ values 1.1 $p(a e, f) = \frac{1}{4} \frac{2}{4} = \frac{1}{2}$ (2 alignments $p=\frac{1}{4}$) 1.2 $p(a e, f) = \frac{1}{4} \frac{2}{4} = \frac{1}{2}$ (2 alignments $p=\frac{1}{4}$) 2 $p(a e, f) = \frac{1}{2} \frac{1}{2} = 1$ (1 alignments $p=\frac{1}{2}$)					Repeat Step 3. 1.1 $p(a e, f) = \frac{1}{8} / \frac{2}{4} = \frac{1}{4}$ 1.2 $p(a e, f) = \frac{3}{8} / \frac{2}{4} = \frac{3}{4}$ 2 $p(a e, f) = \frac{1}{2} / \frac{1}{2} = 1$				/4 /4					
odel 1 a		Step 4. Collect fractional counts (fc) $tc(bleue house) = \frac{1}{2}$ $tc(maison house) = \frac{1}{2} + 1 = \frac{3}{2}$ (in 2 sentences) $tc(bleue blue) = \frac{1}{2}$ $tc(maison blue) = \frac{1}{2}$						Repea tc(ble tc(ma tc(ble tc(ma	at Ste eue aiso eue aiso	ep 4. houso n hou blue) n blu	e) = $\frac{1}{1}$ ise) = $= \frac{3}{4}$ e) = $\frac{1}{7}$	$\frac{\frac{4}{4}}{\frac{3}{4}} + 1$	= 7/4			
IBM M		Step 1. Normalize fc to get revised parameter values $t(\text{bleue} \text{house}) = \frac{1}{2} / \frac{4}{2} = \frac{1}{4} (\frac{3}{2} + \frac{1}{2})$ $t(\text{maison} \text{house}) = \frac{3}{2} / \frac{4}{2} = \frac{3}{4} (\frac{3}{2} + \frac{1}{2})$ $t(\text{bleue} \text{blue}) = \frac{1}{2} / 1 = \frac{1}{2} (\frac{1}{2} + \frac{1}{2})$ $t(\text{maison} \text{blue}) = \frac{1}{2} / 1 = \frac{1}{2} (\frac{1}{2} + \frac{1}{2})$		alues) (2)			Repea t(bleu t(mai t(bleu t(mai	at St ue h ison ue b ison	e p 4. nouse hous lue) blue	$) = \frac{1}{4}$ $(se) = \frac{7}{4}$ $= \frac{3}{4}/{4}$ $) = \frac{1}{4}$	$/ \frac{4}{2} = \frac{4}{2}$ $/ \frac{4}{2}$ $1 = \frac{3}{4}$ $1 = \frac{1}{2}$	$\frac{1}{8} = \frac{7}{8}$				

IBM Model 1 and EM – Example (cont.)

Repeating step 2-5 many times yields:

- $\leq t$ (bleue|house) = 0.0001
- $\leq t$ (maison|house) = 0.9999
- $\leq t$ (bleue|blue) = 0.9999
- $\leq t$ (maison|blue) = 0.0001

IBM Model 1 and EM – Pseudocode

Inpu	it: set of sentence pairs (e,f)	14:	// collect counts
Outp	out: translation prob. $t(e f)$	15 :	for all words <i>e</i> in e do
1:	initialize $t(e f)$ uniformly	16:	for all words f in f do
2:	while not converged do	17:	<pre>count(e f)+= t(e f)/s-total(e)</pre>
3:	// initialize	18:	<pre>total(f)+= t(e f)/s-total(e)</pre>
4:	count(e f) = 0 for all e, f	19:	end for
5.	total(f) = 0 for all f	20:	end for
5.		21:	end for
6:	for all sentence pairs (e,f) do	22:	<pre>// estimate probabilities</pre>
7:	<pre>// compute normalization</pre>	23:	for all foreign words f do
8:	for all words <i>e</i> in e do	24:	for all English words e do
9:	s-total(e) = 0	25 :	t(e f) = count(e f)/total(f)
10:	for all words f in f do	26:	end for
11:	s-total(e) += $t(e f)$	27:	end for
12:	end for	28:	end while
13:	end for		

EM – Convergence

📕 The	data		das	Haus	das	Buc	h	ein	Buch
🛃 The	resu	lts	the	house	the	boo	k	a	book
	е	f	initial	1 st it.	2 nd it.	3 rd it.	•••	final	
	the	das	0.25	0.5	0.6364	0.7479	•••	1	
	book	das	0.25	0.25	0.1818	0.1208	•••	0	
	house	das	0.25	0.25	0.1818	0.1313	•••	0	
	the	buch	0.25	0.25	0.1818	0.1208		0	
	book	buch	0.25	0.5	0.6364	0.7479	•••	1	
	а	buch	0.25	0.25	0.1818	0.1313		0	
	book	ein	0.25	0.5	0.4286	0.3466	•••	0	
	а	ein	0.25	0.5	0.5714	0.6534	•••	1	
	the	haus	0.25	0.5	0.4286	0.3466	•••	0	
	house	haus	0.25	0.5	0.5714	0.6534	•••	1	

Perplexity

How well does the model fit the data?

Perplexity: derived from probability of the training data according to the model

$$\log_2 PP = -\sum_s \log_2 p(e_s|f_s)$$

here *e* is the translation and *f* the source (classical notation)

E Example ($\epsilon = 1$)

	initial	1 st it.	2 nd it.	3 rd it.	•••	final
p(thehaus dashaus)	0.0625	0.1875	0.1905	0.1913	•••	0.1875
p(thebook dasbuch)	0.0625	0.1406	0.1790	0.2075	•••	0.25
p(abook einbuch)	0.0625	0.1875	0.1907	0.1913	•••	0.1875
perplexity	4095	202.3	153.6	131.6	•••	113.8

$\blacksquare \Delta$ perplexity is the convergence

because of the convergence behavior of EM

Ensuring fluent output

The translation model cannot decide between small and little

- sometime one is preferred over the other:
 - small step: 2,070,000 occurrences in the Google index
 - little step: 257,000 occurrences in the Google index

who is here to help? The language model

estimate how likely a string is English based on n-gram statistics

$$p(e) = p(e_1, e_2, \dots, e_n)$$
$$= n(e_1)n(e_2|e_1) \quad n(e_1|e_1)$$

$$= p(e_1)p(e_2|e_1) \dots p(e_n|e_1, e_2, \dots, e_{n-1})$$

$$\approx p(e_1)p(e_2|e_1) \dots p(e_n|e_{n-2}, e_{n-1})$$

Noisy Channel Model

In order to integrate a language model

< Bayes Rule

$$\text{ argmax}_{e} p(e|f) = \operatorname{argmax}_{e} \frac{p(f|e)p(e)}{p(f)}$$

$$\text{ argmax}_{e} p(f|e)p(e)$$

here *e* is the translation and *f* the source (classical notation)

Higher IBM Models

IBM Model 1	lexical translation
	has a global maximum
IBM Model 2	adds absolute alignment (reordering) model
	modeling alignments with probability distribution translating foreign word at position i to English word at position j : $a(i j, l_e, l_f)$
IBM Model 3	adds fertility model
	number of English words generated by a foreign word $f:n(\phi f)$ where ϕ is the number of words f translates into
IBM Model 4	adds relative alignment (reordering) model
	relative to previously translated words
IBM Model 5	fixes deficiency
	Models 1-4 are deficient i.e. – some impossible translations have positive probability – multiple output words may be placed in the same position

IBM Model 2

Adding a model of alignment

IBM Model 3

Summary

- Lexical translation
- 🛃 Alignment
- Expectation Maximization (EM) Algorithm
- 🛃 Noisy Channel Model
- E IBM Models 1–5

Summary

- IBM Models were the pioneering models in statistical machine translation
- Introduced important concepts
 - < generative model
 - EM training
 - reordering models
- Only used for niche applications as translation model
- ... but still in common use for word alignment
 - e.g., GIZA++ toolkit

WORD ALIGNMENT

Foreword

Important notion introduced by IBM models

🛃 We will

- develop this concept further
- point out problems
- discuss how word alignment quality is measured
- present a method based on IBM models but fixes their most glaring problem: limitation to one-tomany alignments

The Task

Given a sentence pair, which words correspond to each other?

Word Alignment?

Is the English word does aligned to the German wohnt (verb) or nicht (negation) or neither?

Word Alignment?

How do the idioms kicked the bucket and biss ins grass match up?

 \Rightarrow ins (ge) \rightarrow in the (en)

$$\Rightarrow$$
 gras (ge) \rightarrow grass (en)

Outside this exceptional context, bucket is never a good translation for grass

Measuring Word Aligment Quality

- Manually align corpus with sure (S) and possible (P) alignment points ($S \subseteq P$). [reference]
- Common metric for evaluating computed word alignment <u>A</u>: Alignment Error Rate (AER)

 $AER(S, P; A) = 1 - \frac{|A \cap S| + |A \cap P|}{|A| + |S|}$

- AER = 0: alignment A matches all sure, any possible alignment points
- However: different applications require different precision/recall trade-offs

Word Alignment with IBM Models

BM Models create a **many-to-one** mapping

- Source works are aligned using an alignment function
- a function may return the same value for different input (one-to-many mapping)
- a function can not return multiple values for one input (no many-to-one mapping)

Real word alignments have many-to-many mappings

Growing Heuristic

grow-diag-final(e2f,f2e)

- 1: neighboring = $\{(-1,0), (0,-1), (1,0), (0,1), (-1,-1), (-1,1), (1,-1), (1,1)\}$
- 2: alignment A = intersect(e2f,f2e); grow-diag(); final(e2f); final(f2e);

grow-diag()

- 1: while new points added do
- 2: for all English word $e \in [1 \dots e_n]$, foreign word $f \in [1 \dots f_n]$, $(e, f) \in A$ do
- 3: for all neighboring alignment points (e_{new}, f_{new}) do
- 4: **if** $(e_{new} \text{ unaligned } \text{or } f_{new} \text{ unaligned})$ **and** $(e_{new}, f_{new}) \in \text{ union}(e_{2}f_{1}f_{2}e)$ **then**
- 5: add (e_{new}, f_{new}) to A
- 6: **end if**
- 7: end for
- 8: end for
- 9: end while

final()

- 1: for all English word $e_{new} \in [1 \dots e_n]$, foreign word $f_{new} \in [1 \dots f_n]$ do
- 2: if $(e_{new} \text{ unaligned } \text{or } f_{new} \text{ unaligned})$ and $(e_{new}, f_{new}) \in \text{union}(e_{2}f_{1}f_{2}e)$ then
- 3: add (e_{new}, f_{new}) to A
- 4: end if
- 5: **end for**

PHRASE-BASED MODELS

Motivation

- Word-Based Models translate words as atomic units
- Phrase-Based Models translate phrases as atomic units
 - Advantages:
 - many-to-many translation can handle non-compositional phrases
 - 💑 ι
- use of local context in translation
 - the more data, the longer phrases can be learned
 - "Standard Model", used by Google Translate and others

Case study

🛃 Example

Foreign input is segmented in phrases

any sequence of words, not necessarily linguistically motivated

Each phrase is translated into English

Phrases are reordered

Phrase-Based Translation Model

- Major components of phrase-based model
- optimize translation model $\phi(f|e)$
- distance-based reordering model d
- \triangleleft language model $p_{LM}(e)$
- 📙 Bayes rule
- $e_{\text{best}} = \operatorname{argmax}_e p(e|f) = \operatorname{argmax}_e p(f|e) p_{\text{LM}}(e)$
- Sentence f is decomposed into I phrases $(\overline{f}_1^l = \overline{f}_1, ..., \overline{f}_I)$
- For the model, p(f|e) is further decomposed into
- $\leqslant \ p\left(\overline{f}_{1}^{I}|\overline{e}_{1}^{I}\right) = \prod_{i=1}^{I} \phi\left(\overline{f}_{i}|\overline{e}_{i}\right) d(start_{i} end_{i-1} 1)$

Breakdown of the formula

$$p\left(\overline{f}_{1}^{I}|\overline{e}_{1}^{I}\right) = \prod_{i=1}^{I} \phi\left(\overline{f}_{i}|\overline{e}_{i}\right) d(start_{i} - end_{i-1} - 1)$$

each foreign phrase \overline{f}_i is translated into an English phrase \overline{e}_i all segmentation are equally likely

- reordering is handled by a distance-based reordering model (reordering relative to the previous point) [next slide]
- start_i position of the first word of the foreign input phrase that translates to the English phrase

- *end*_i position of the last word of that foreign phrase
- reordering computed as $start_i end_{i-1} 1$

Distance-Based Reordering

phrase	translates	movement	distance
1	1–3	start at beginning	0
2	6	skip over 4–5	+2
3	4–5	move back over 4–6	-3
4	7	skip over 6	+1

Scoring function: $d(x) = \alpha^{|x|} - exponential$ with distance

Phrase Translation Table: Example

PTT for den Vorschlag learned from the EuroParl corpus

English	$\phi(e f)$	English	$\phi(e f)$
the proposal	0.6227	the suggestions	0.0114
's proposal	0.1068	the proposed	0.0114
a proposal	0.0341	the motion	0.0091
the idea	0.0250	the idea of	0.0091
this proposal	0.0227	the proposal,	0.0068
proposal	0.0205	its proposal	0.0068
of the proposal	0.0159	it	0.0068
the proposals	0.0159		

- lexical variation (proposal vs suggestions)
- morphological variation (proposal vs proposals)
- included function words (the, a, ...)
- < 🛛 noise (it)

Linguistic Phrase?

- Model is not limited to linguistic phrases
 - solution phrases, verb phrases, prepositional phrases, ...
- 🛃 Example non-linguistic phrase pair
 - \clubsuit spass am \rightarrow fun with the
- Prior noun often helps with translation of preposition
- Experiments show that limitation to linguistic phrases hurts quality

How to Learn the Translation Table?

E Three stages

- 1. collect word alignments: using IBM or other
- 2. extract phrase pairs
- **3.** score phrase pairs
Word alignments

Examples

Extracting Phrase Pairs

...consistent with word alignment

🛃 Example

ssumes that / geht davon aus , dass

Consistency?

All words of the phrase pair have to align to each other

Consistency?

A phrase pair $(\overline{e}, \overline{f})$ is consistent with an alignment A, if all words f_1, \dots, f_n in \overline{f} that have alignment points in A have these with words e_1, \dots, e_m in \overline{e} and vice versa:

 $(\overline{e},\overline{f})$ consistent with $A \Leftrightarrow$

$$\forall e_i \in \overline{e} : (e_i, f_j) \in A \Longrightarrow f_j \in \overline{f}$$

AND
$$\forall f_i \in \overline{f} : (e_i, f_j) \in A \Longrightarrow e_i \in \overline{e}$$

AND
$$\exists e_i \in \overline{e}, f_j \in \overline{f} : (e_i, f_j) \in A$$

(Maria, Mary), (no, did not), (daba una bofetada, slap), (a la, the), (bruja, witch), (verde, green)

- (Maria, Mary), (no, did not), (daba una bofetada, slap), (a la, the), (bruja, witch), (verde, green)
- (Maria no, Mary did not), (no daba una bofetada, did not slap), (daba una bofetada a la, slap the), (bruja verde, green witch)

- (Maria, Mary), (no, did not), (daba una bofetada, slap), (a la, the), (bruja, witch), (verde, green)
- (Maria no, Mary did not), (no daba una bofetada, did not slap), (daba una bofetada a la, slap the), (bruja verde, green witch)
- (Maria no daba una bofetada, Mary did not slap), (no daba una bofetada a la, did not slap the), (a la bruja verde, the green witch)

- (Maria, Mary), (no, did not), (daba una bofetada, slap), (a la, the), (bruja, witch), (verde, green)
- (Maria no, Mary did not), (no daba una bofetada, did not slap), (daba una bofetada a la, slap the), (bruja verde, green witch)
- (Maria no daba una bofetada, Mary did not slap), (no daba una bofetada a la, did not slap the), (a la bruja verde, the green witch)
- (Maria no daba una bofetada a la, Mary did not slap the), (daba una bofetada a la bruja verde, slap the green witch)

- (Maria, Mary), (no, did not), (daba una bofetada, slap), (a la, the), (bruja, witch), (verde, green)
- (Maria no, Mary did not), (no daba una bofetada, did not slap), (daba una bofetada a la, slap the), (bruja verde, green witch)
- (Maria no daba una bofetada, Mary did not slap), (no daba una bofetada a la, did not slap the), (a la bruja verde, the green witch)
- (Maria no daba una bofetad a la, Mary did not slap the), (daba una bofetada a la bruja verde, slap the green witch)
- (no daba una bofetada a la bruja verde, did not slap the green witch)
- (Maria no daba una bofetada a la bruja verde, Mary did not slap the green witch)

Scoring Phrase Translations

- Phrase pair extraction:
 - collect all phrase pairs from the data
- Phrase pair scoring:
 - assign probabilities to phrase translations
 - probability distribution of phrase pairs: $\phi(\overline{f}, \overline{e})$
 - Score by relative frequency:

$$\phi(\overline{f},\overline{e}) = \frac{\operatorname{count}(\overline{e},\overline{f})}{\sum_{\overline{f}_i} \operatorname{count}(\overline{e},\overline{f}_i)}$$

Size of the Phrase Table

🛃 Comment

Phrase translation table typically bigger than corpus ... even with limits on phrase lengths (e.g., max 7 words)

Too big to store in memory?

- Solution for training
 - extract to disk, sort, construct for one source phrase at a time
- Solutions for decoding
- on-disk data structures with index for quick look-ups
- suffix arrays to create phrase pairs on demand

Reordering

📕 Several options

- Monotone translation, i.e. do not allow any reordering
 - worse translations
- Limiting reordering (to movement over max. number of words) helps
- Solution Distance-based reordering cost
 - \clubsuit moving a foreign phrase over n words: cost ω^n
- Lexicalized reordering model

Log-linear Models

- IBM Models provided mathematical justification for factoring components (*features*) together
 - $\triangleleft p_{\rm LM} \times p_{\rm D} \times p_{\rm TM}$
 - (Language Model, Translation Model, Distortion)
- The models (*features*) may be weighted $\Leftrightarrow p_{LM}^{\lambda_{LM}} \times p_{D}^{\lambda_{D}} \times p_{TM}^{\lambda_{TM}}$
- Many components (features) p_i with weights λ_i $\Pi_i p_i^{\lambda_i} = exp(\sum_i \lambda_i log(p_i))$ $\log \prod_i p_i^{\lambda_i} = \sum_i \lambda_i log(p_i)$

Log-Linear Model

Such a weighted model is a log-linear model:

$$p(x) = \exp \sum_{i=1}^{n} \lambda_i h_i(x)$$

Our feature functions

 \leq number of feature function n = 3

- \forall random variable x = (e, f, start, end)
- \triangleleft feature function $h1 = \log \phi$
- \triangleleft feature function $h^2 = \log d$

 \triangleleft feature function $h3 = \log p_{\rm LM}$

Knowledge Sources (features)

🛃 Quite a lot:

- language model
- reordering (distortion) model
- phrase translation model
- word translation model
- < word count

- 🍯 phrase count
 - drop word feature
- phrase pair frequency
 - additional language models
- - additional features

Tuning Feature Weights

🛃 Goal

for each component (*feature*) p_i ; determine its weight λ_i , i.e. the contribution of p_i

🛃 Methods

- manual setting of weights: try a few, take best
- automate this process: learn weights

🛃 Learn weights

set aside a development corpus

set the weights, so that optimal translation performance on this development corpus is achieved

requires *automatic scoring* method (e.g., BLEU)

Feature Weights Learning

Discriminative vs. Generative Models

Generative models

- translation process is broken down to steps
- seach step is modeled by a *probability distribution*
- each probability distribution is estimated from the data by *maximum likelihood*

Discriminative models

- model consist of a number of *features* (e.g. the language model score)
- each feature has a weight, measuring its value for judging a translation as correct

feature weights are *optimized on development* data, so that the system output matches correct translations as close as possible

Discriminative Training

- Training set (*development set*)
 - different from original training set
 - small (maybe 1000 sentences)
 - must be different from test set
- E Current model *translates* this development set
 - *n-best list* of translations (n=100, 10000)
 - translations in n-best list can be scored
- E Feature weights are *adjusted*
- n-best list generation and feature weight adjustment repeated for a number of iterations

Methods to Adjust Feature Weights

Maximum entropy [Och and Ney, ACL2002]

match expectation of feature values of model and data

Minimum error rate training [Och, ACL2003]

- try to rank best translations first in n-best list
- can be adapted for various error metrics, even BLEU
- **Ordinal regression** [Shen et al., NAACL2004]
 - $\leq separate k$ worst from the k best translations

Summary

📩 Phrase Model

- Training the model
 - word alignment
 - phrase pair extraction
 - phrase pair scoring
- 🛃 Log linear model
 - sub-models as feature functions
 - lexical weighting

 - word and phrase count features
- EM training of the phrase model

DECODING

The Task

A mathematical model for translation

- Find the best scoring translation e_{best} according to the features and their respective weights
- $e_{\text{best}} = \operatorname{argmax}_{e} p(e|f)$
- A very hard problem
 - NP-complet [Knight 1999]
 - i.e. examining all possible translations, scoring them, and picking the best is computationally too expensive even for a sentence of modest length
- 🛃 In practice
 - heuristic search methods
 - Two types of error
 - the most probable translation is bad: fix de model
 - search does not find the most probable translation: fix the search
 - Decoding is evaluated by search errors, not quality of translation
 - although these are often correlated

Input sentence to be translated in English

er	geht	ja	nicht	nach	hause

Pick a phrase in the input, translate it

Pick a phrase and translate

- possible skip to accommodate some features of the model
 - "negation before the verb in English"

... until every source phrase is translated

Computing Translation Probability

🛃 Probabilistic model

• $e_{\text{best}} = \operatorname{argmax}_{e} \prod_{i=1}^{l} \phi(\overline{f}_{i} | \overline{e}_{i}) d(\operatorname{start}_{i} - \operatorname{end}_{i-1} - 1) p_{\text{LM}}(e)$

Score is computed incrementally for each partial hypothesis

🗏 Components

Phrase translation Picking phrase \overline{f}_i to be translated as a phrase \overline{e}_i

 \rightarrow look up score $\phi(\overline{f}_i | \overline{e}_i)$ from phrase translation table

Reordering Previous phrase ended in end_{i-1} , current phrase starts at $start_i$

 \rightarrow compute $d(start_i - end_{i-1} - 1)$

Language model For *n*-gram model, need to keep track of last n - 1 words

 \rightarrow compute score $p_{\text{LM}}(w_i|w_{i-(n-1)}, \dots, w_{i-1})$ for added words w_i

Translation Options

Many translation options to choose from (search graph)

- in Europarl phrase table: 2727 matching phrase pairs for this sentence
- by pruning to the top 20 per phrase, 202 translation options remain

Translation Options

- picking the right translation options
 - arranging them in the right order
- \rightarrow Search problem solved by heuristic beam search

consult phrase translation table for all input phrases

initial hypothesis: no input words covered, no output produced

pick any translation option, create new hypothesis

create hypotheses for all other translation options

also create hypotheses from created partial hypothesis
Decoding: Precompute Translation options

backtrack from highest scoring complete hypothesis

Computational complexity

- The suggested process creates exponential number of hypothesis
- Machine translation decoding is NP-complete
- **Reduction of search space:**
 - recombination (risk-free)
 - 👂 pruning (risky)

Recombination

- Two hypothesis paths lead to two matching hypotheses
- same number of foreign words translated
- same English words in the output
- different scores

Worse hypothesis is dropped

Recombination

- Two hypothesis paths lead to hypotheses indistinguishable in subsequent search
 - same number of foreign words translated
 - same last two English words in output (assuming trigram language model)
 - same last foreign word translated
 - different scores

Worse hypothesis is dropped

Restrictions on Recombination

Translation model

- Phrase translation independent from each other
- \Leftrightarrow \rightarrow no restriction to hypothesis recombination

🛃 Language model

- Solution Last n 1 words used as history in n-gram language model to compute the probability of word n
- $\stackrel{\bigstar}{\rightarrow}$ recombined hypotheses must match in their last n 1 words

🛃 Reordering model

- Distance-based reordering model based on distance to end position of previous input phrase
- \Leftrightarrow \rightarrow recombined hypotheses must have that same end position

Other feature function

 \Leftrightarrow \rightarrow may introduce additional restrictions

Pruning

- Organize hypotheses in stacks
 - same source words covered
 - same number of source words covered
 - same number of target words translated
- Compare the hypotheses in stacks ; remove the bad ones
 - **histogram pruning**: keep the *k* best hypotheses for each cell (eg, n = 100)
 - Computational time complexity of decoding with histogram pruning
 - *i*
- $O(\max \text{ stack size} \times \text{ translation options} \times \text{ sentence length})$
- Number of translation options is linear with sentence length, hence:
 - $0 (\max \text{ stack size} \times \text{ sentence length}^2)$
- Quadratic complexity
- Solution the set of the set that have a score equal to $\alpha \times \text{best score}$ (score of the best hypothesis) ($\alpha < 1$)

Pruning: Stacks Based on previous words translated

Hypothesis expansion in a stack decoder

translation option is applied to hypothesis

new hypothesis is dropped into a stack further down

What About Reordering?

- Limiting reordering to maximum reordering distance
- **Typical reordering distance 5–8 words**
 - 👂 depending on language pair
 - Iarger reordering limit hurts translation quality
- **Reduces complexity to linear**
 - $\leq O(\max \operatorname{stack} \operatorname{size} \times \operatorname{sentence} \operatorname{length})$
- Speed / quality trade-off by setting maximum stack size

What About Translating "Easy Phrases"?

Balance current cost with future cost estimate

bow expensive is translation of rest of sentence?

🛃 Optimistic

- choose cheapest translation options
- Cost for each translation option
 - translation model: cost known
- language model: output words known, but not context

 \rightarrow estimate without context

reordering model: unknown, ignored for future cost estimation

Beam Search

Described algorithm...

- ...resembles the one of beam of light that follows the presumably best hypothesis path, but with a certain width it also illuminates neighboring hypotheses that differ not to much from the best one
- Hence the name!
- Other algorithms for decoding
 - Search 🗧
 - Greedy hill-climbing
 - Using finite state transducers (standard toolkits)

SUMMARY

- Translation process: produce output left to right
- Translation options
- Decoding by hypothesis expansion
- Reducing search space
 - < recombination
 - pruning (requires future cost estimate)
- E Other decoding algorithms