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Abstract

Current Spoken Language Understanding systems rely either on
hand-written semantic grammars or on flat attribute-value se-
quence labeling. In both approaches, concepts and their rela-
tions (when modeled at all) are domain-specific, thus making it
difficult to expand or port the domain model.

To address this issue, we introduce: 1) a domain model
based on an ontology where concepts are classified into either
predicative or argumentative; 2) the modeling of relations be-
tween such concept classes in terms of classical relations as
defined in lexical semantics. We study and analyze our ap-
proach on a corpus of customer care data, where we evaluate
the coverage and relevance of the ontology for the interpreta-
tion of speech utterances.

Index Terms: Spoken Language Understanding, domain mod-
eling, ontology design, semantic relations

1. Introduction

Spoken language understanding (SLU) addresses the problem
of extracting and annotating the meaning structure from spoken
utterances in the context of human dialogs [1]. In spoken dialog
systems (SDS), the most widespread models of SLU are based
on the identification of slots (entities) within one or more frames
(frame-slot semantics) defined by the application domain. Such
model is limited in several respects: 1) the concept taxonomy is
often too domain-specific and must be redefined when moving
towards a new domain; 2) there is rarely any account of which
relations may occur between concepts and when these are de-
fined, they are generally purpose-built for a specific application.

To address these issues, we advocate the use of an ontol-
ogy as a domain model for a SDS in order to exploit not only
knowledge about the properties of individual concepts, but also
their relations, expressed in terms of classical semantic rela-
tions. We propose a lightweight approach to ontology design
and implementation within an SLU module, adding an extra
layer of interpretation to the attribute-value interpretation per-
formed by a baseline SLU system. This is achieved by mapping
each concept interpretation to an instance of an ontology con-
cept, thus activating its relations with the other concepts during
interpretation. We demonstrate our approach by designing an
ontology to represent the customer care and technical support
center domain as studied within the European project LUNA
(ist-1luna.eu). However, the approach we follow for ontol-
ogy design is generic and lightweight, making it applicable to
other domains.

This work was funded by the European Commission projects
LUNA (contract 33549) and ADAMACH (contract 022593).

1.1. Related work

In related work, ontologies have been used in the context of
SDS to support a variety of objectives: ellipsis and reference
resolution in the output of Automatic Speech Recognition [2],
representation and clustering of user intentions within dialog
manager [3], or creation of Natural Language Generation rules
in a smart home environment [4]. However, the two shortcom-
ings outlined above remain largely true in current SDS technol-
ogy. Moreover, little work exists to our knowledge in the field of
SLU: in contrast, we believe that using an ontology may be very
beneficial to validate interpretations by assessing how plausible
they are according to the ontology.

In this paper, Sec. 2 describes our approach to ontology
design and the resulting ontology for the customer care domain;
Sec. 3 describes how the ontology is interfaced to the SLU
component of a SDS; Sec. 4 and 5 illustrate our experiments
to analyze ontology relations in a reference corpus and their
relationship with the outcome of SLU results. Finally, Sec. 6
discusses future work and draws conclusions on our study.

2. Ontology as a Domain Model

In the past, domain modeling for SLU has mainly relied on ad
hoc concepts with (optionally, but not always) ad hoc, domain-
dependent relations. In contrast, our approach to ontology mod-
eling is intended to be generic and portable to other domains.
For this reason, we model ontologies as trees rooted in an ab-
stract class Concept. Moreover, it appears intuitive to repre-
sent the semantics of a domain in terms of the relations between
the predicates (actions) and the arguments they take (objects):
a notable element of novelty in our model is the fact that it fol-
lows the predicate-argument approach which can also be found
in other layers of annotation (e.g. FrameNet-based [5]).

Predicative and argumentative roles of concepts are rep-
resented in our model by two abstract Concept subclasses,
PConcept and AConcept. The former represent predica-
tive concepts, i.e. concepts which define an action performed
on a number of arguments; for instance, in the LUNA do-
main, HardwareOperation is performed on an instance of
Hardware. Classes of concepts that may only be arguments
of such predicates are subclasses of AConcept; an example of
this in the LUNA domain is Peripheral.

The concept hierarchy of the LUNA ontology, which has
been designed with Protégé!, contains 32 concept classes, the
main ones being illustrated in Fig. 1. In addition, each class has
a number of attributes (“slots”): for instance, Computer has 2
attributes, type (e.g. laptop, PC) and brand (e.g. DELL).

The SLU task consists in labelling word sequences as ei-
ther concept attributes or null in case they are irrelevant to the
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Figure 1: Structure of the LUNA ontology in Protégé 3.3.1

domain. For instance, the annotation of the following turn:
la nostra stampante non stampa pii 1

which translates to: our printer does not print anymore, is:
Peripheral.type{la nostra stampante}
HardwareOperation.negate{non}
HardwareOperation.type{stampa} null{pii}.

2.1. Classical Relations

As mentioned above, our main motivation for using an on-
tology is to exploit “classical” relations (in the sense of lexi-
cal semantics, e.g. in [6]) between concepts and between at-
tributes. Table 1 summarizes the five different classes of rela-
tions we consider in the LUNA ontology. For instance, refsen-
tence) contains a REL SUPER relation, as there exists a relation
between HardwareOperation and Hardware, the super-
class of Peripheral, and a NEGATE relation between the
negate and type attributes of HardwareOperation.

Table 1: Classical relations applicable to a concept pair (a, b)

Relation Description Example

IS-A b is a’s superclass Peripheral,
(AConcept only) HardwareComponent
SUPER a and b have the NetworkComponent,

same superclass ExternalDevice
(AConcept only)
REL a relation is defined ProblemSoftware,

between a and b Software
(b must be an HardwareOperation,

AConcept) Computer
REL a relation is defined HardwareOperation,
SUPER between a and b’s Peripheral
superclass (b must ProblemHardware,
be an AConcept) Computer

NEGATE negation
(PConcept only)

HardwareOperation
.negate, .type

2.2. Ontology Relatedness

The first step towards assessing the contribution of the ontol-
ogy to the validation of SLU hypotheses is to associate a binary
relatedness measure between nodes in the ontology tree. We de-
fine the relatedness between two concepts ¢ and ¢, r(c1, c2),
as equal to a constant M AX _R if the concepts share a relation

among those defined in Table 1, and to O otherwise. Different
values of M AX _R may be assigned to different classes of re-
lations based on e.g. manual tuning or linear regression from a
reference corpus.

Since hypotheses may contain more than two concept in-
terpretations (see Fig. 3), we define the following combined
utterance-level relatedness metric. For each concept ¢; in a hy-
pothesis hyp, we average the binary relatedness between such
concept and the concepts appearing within a given window w:

1
r$(ei) = &R Z r(ci,¢j) (2)
v (eirej)ESY
where S;” denotes the set of concept pairs (c;, ;) such that
|t — j| < w. The combined relatedness between the concepts
in the hypothesis, rel., (hyp), is equal to:

Zciehyp 7”8 (Cz)

MAX_R ®

relw (hyp) =

3. Implementing Ontology Relations

The process from theoretical domain engineering to the ex-
traction of ontology relations from an SLU hypothesis is
lightweight in our framework. First, the frame-slot semantics
of attribute-value annotation required by SLU is well mirrored
by that of Protégé-frames, our chosen ontology editing tool.
Moreover, the tool allows to easily represent relations between
concepts, which are encoded as attributes having specific types
(hence restricting the domain of such relations). For instance,
ProblemHardware has four attributes:

1. isRelatedTo, of type Hardware, represents a rela-
tion to a subclass of a hardware device;

2. type, of type String;
3. ProblemID, of type int;

4. time, of type Time, represents a relation to the time
when the problem occurred.

This paradigm is in turn very similar to the one adopted
in object-oriented programming: indeed, we obtain a direct
mapping from the Protégé ontology file (.pont) to a Java pack-
age, named lunaOntology, via a purpose-built parser. This
makes any ontology updates extremely easy to transfer to the
SLU module.

Each class in the lunaOntology package mirrors an
ontology class; the advantage is a direct encoding of super-
class/subclass relations as well as all relations described as at-
tributes in Protégé. When confronted with a new concept-value
interpretation from the SLU, reflection (a meta-programming
feature) is used to create an instance of the corresponding class,
thus exploiting its properties to represent ontology relations.
Figure 2 illustrates the Java class ProblemHardware.java, rep-
resenting the ontology class ProblemHardware.

The first question when using an ontology to either manu-
ally or automatically annotate (for model training resp. during
SDS deployment) data is how well the former adheres to such
data and how well it represents utterance semantics. To address
these questions, we analyze our reference corpus in Section 4
and discuss the value of ontology relatedness in our SLU model
in Section 5.



package lunaOntology;
public class ProblemHardware extends Problem{

Hardware isRelatedTo;
String type;

String ProblemID;
Time time;

}

Figure 2: Java representation of class ProblemHardware

4. Corpus Analysis

The LUNA dataset is planned to contain 1000 equally par-
titioned Human-Human (HH) and Human-Machine (HM) di-
alogs, recorded by the technical support center of an Italian
company. We have currently acquired and manually tran-
scribed 4500 HM turns containing spontaneous customer re-
quests. These follow one of ten possible dialog scenarios in-
spired by the services provided by the company. Such tran-
scriptions have been manually annotated using the ontology and
split into a training and test set for our statistical SLU model
(see Sec. 5). The test set contains 128 dialogs composed of 585
turns, where 599 non-null concepts have been annotated. In this
section, we analyze the annotation of such test set, which is the
reference for SLU results.

Figure 3 illustrates the distribution of the concepts in the
reference turns, showing that there are about 210 turns carrying
no concepts (typically greetings), and 123 involving only one
concept, progressively decreasing until 12. Hence, relatedness
based on the ontology is only applicable to the remaining turns.

Figure 3: Distribution of concepts per turn in the reference (%)

Figures 4 and 5 illustrate the distribution between different
types of AConcept and PConcept in the reference corpus.
The most frequent instances of the former refer to either User
(callers identifying themselves or referring to colleagues), or
subclasses of Hardware and Problem (indeed, these often
cooccur in the reference). Moreover, the majority of predica-
tive concepts appearing in the corpus refer to hardware opera-
tions (HardwareOperation), while the second most popu-
lar PConcept is GenericAction, referring to actions such
as “checking” or “re-trying”.

The distribution of ontology relations found in the refer-
ence corpus is illustrated in Figure 6. There is a total of 1542
instances of relations between concepts, in addition to 2870
pairs of concepts sharing the same class (e.g. Time.day
and Time.month). While hypernymy relations (IS-A
and SUPER) appear rarely, the most frequently occurring
relations are those occurring between a PConcept and an
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Figure 4: AConcept distribution in the reference corpus
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Figure 5: PConcept distribution in the reference corpus

AConcept or its superclass (such as HardwareOperation
and Computer) or between AConcept (such as
ProblemSoftware and Software). The negation relation
is also well represented (HardwareOperation.negate -
HardwareOperation.operationType).

SUPERCLASS ; PC REL SUPER;
11% 27%

IS-A; 0%

ACREL; 20%

PCREL; 11%

AC REL SUPER;
13%

NEGATE; 18%

Figure 6: Distribution of ontology relations in the reference cor-
pus (AC = AConcept; PC=PConcept)

Figure 7 illustrates the coverage of the relatedness metric
rel,, in the reference corpus for different window sizes. Cov-
erage is measured in terms of the number of concepts whose
rel, falls in each of 10 consecutive relatedness ranges”. As it
can be noted, the ontology relatedness is not a direct measure
of correctness, i.e. not all correct interpretations fall within the
[0.9, 1.0) range. This may be understood by considering that in
spontaneous speech, the concepts mentioned in a sentence need
not necessarily be “related”, even in a loose sense. Indeed, in
most cases the relatedness lies in (or above) the [0.6, 07) inter-
val.

2In our experiments, we have been focusing on relations, excluding
AConcept hypernymy (i.e. IS-A and SUPER), which account for less
than 12% of relations, from the relatedness metric.
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Figure 7: Coverage of the utterance relatedness rel,, in the ref-
erence corpus for w varying between 3 and 10. Each column
represents the percentage of concepts whose utterance related-
ness falls within the underlying range for a given value of w

5. Spoken Language Understanding

We have used our training and test set in order to train our
statistical model for Spoken Language Understanding, which
produces a list of hypotheses mapping surface words to con-
cepts via a Stochastic Conceptual Language Model (SCLM).
Our model is a slight modification of the one described in [7]:
the main difference is that we train the language model and we
then convert it into a stochastic Finite State Transducer (FST).
The Asruv model therefore combines three transducers:

ASLU = Aw © Awac © AsLm,

where A is the transducer representation of the input sentence,
Awac is the transducer mapping words to concepts and Asr,as
is the SCLM converted into an FST. The latter represents the
joint probability of word and concept sequences: P(W,C) =
Hle P(wi,c;i|hi), where W = wy..wg, C = ¢1..c, and h; =
W;—1Ci—1..W1C1.

Having trained the SLU model on the training set described
above, we have run it on the test set turn, obtaining a ranked
list of up to ten interpretations (the baseline Concept Error Rate
of the top interpretation is 27.1%). We then measure the fre-
quency of correct concept interpretations with respect to the on-
tology relatedness interval in the top ten SLU results. We define
such correctness to be the number of matches (in terms of both
concept and surface®) between the reference utterance annota-
tion and the SLU hypothesis and the total number of concepts
annotated in the reference utterance.

Figure 8 shows that after an initial erratic behavior (partly
due to data sparseness), the probability of correct interpretation
tends to increase with the ontology relatedness. Such behavior
is visible in all the ranks of the SLU hypotheses and remains
true after reranking (see below).

In addition, we experimented with a first attempt to perform
ontology-based reranking. This consists in iterating over the top
10 ranks and returning: (a) the first interpretation encountered
having a higher relatedness than that of the top rank (provided
that such relatedness falls within [0.6, 0.9), the relatedness in-
terval in which it is more likely to observe correct interpreta-
tions according to our corpus analysis), or (b) the top rank itself
if no such interpretation is found.

3surface match is relaxed to accept the case where the annotation
surface is included in the hypothesis surface or vice versa
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Figure 8: Probability of correct interpretation with respect to
rels range for the first ranked SLU hypothesis (“baseline”), the
next ranked hypotheses, and after reranking

The results of Figure 8 do not imply a direct use of the
ontology relatedness as a confidence metric to influence SLU
re-ranking (cf “reranking”). Indeed, we are currently studying
the conversion of relatedness into a suitable confidence metric
to combine with the one deriving from our statistical model.

6. Conclusions and Future Work

We have introduced a novel approach to Spoken Language Un-
derstanding that consists in representing the domain model of a
SDS via an ontology of predicative and argumentative concepts
and leveraging the classical semantic relations defined therein
to produce a measure of sentence relatedness and validate the
consistency of interpretations. We have defined an ontology
following such model to suit a customer care domain and exper-
imented with in-domain speech data. Based on these, we have
highlighted the existence of a relation between correct SLU in-
terpretations and ontology relatedness. We are now studying
a conversion of the ontology relatedness into a suitable confi-
dence metric to be combined with the baseline confidence.
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