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Abstract—Current Spoken Language Understanding models
rely on either hand-written semantic grammars or flat attribute-
value sequence labeling. In most cases, no relations between
concepts are modeled, and both concepts and relations are
domain-specific, making it difficult to expand or port the domain
model. In contrast, we expand our previous work on a domain
model based on an ontology where concepts follow the predicate-
argument semantics and domain-independent classical relations
are defined on such concepts. We conduct a thorough study on a
spoken dialog corpus collected within a customer care problem-
solving domain, and we evaluate the coverage and impact of
the ontology for the interpretation, grounding and re-ranking of
spoken language understanding interpretations.

I. INTRODUCTION

In Spoken Dialog Systems (SDS), the most widespread
models of Spoken Language Understanding (SLU) are based
on the identification of slots (entities) within one or more
frames (frame-slot semantics) defined by the application do-
main (as in e.g., ATIS [1]). Such a model is limited in
two main respects: first, the concept taxonomy is often too
domain-specific and must be re-defined when moving towards
a new domain; furthermore, there is rarely any account of
which relations may occur between concepts and when these
are defined, they are generally purpose-built for a specific
application.

To address these issues, we advocate the use of an ontology
as a domain model for a SDS in order to exploit not only
knowledge about the properties of individual concepts, but
also their relations, expressed in terms of classical semantic
relations. An ontology-based representation of the domain
concepts has the advantage of (re)using ontologies developed
for other domains by the scientific community. In related work,
ontologies have been used in the context of SDS to support
a variety of objectives: ellipsis and reference resolution in the
output of Automatic Speech Recognition [2], representation
and clustering of user intentions within a dialog manager
[3], or creation of Natural Language Generation rules in a
smart home environment [4]. However, the two shortcomings
outlined above remain largely true in current SDS technology.
Moreover, little work exists to our knowledge about ontology
use for SLU: we believe that using an ontology may be
very beneficial to validate interpretations by assessing how
plausible they are according to the ontology.

Recently [5], we proposed an approach to ontology de-
sign and implementation within an SLU module, adding an

extra layer of interpretation to the attribute (concept)-value
interpretation performed by a baseline SLU system. This
is achieved by mapping each concept interpretation to an
instance of an ontology concept, thus activating its relations
with the other concepts during interpretation. The approach
we follow for ontology design is generic and lightweight,
making it quickly applicable to different domains. In this
paper, we expand our previous work to accommodate a wider
range of ontology relations, value-based SLU and a wider
application window of ontology relatedness. Moreover, we
study the use of ontology relatedness as a re-ranking strategy
for SLU interpretations deriving from a probabilistic model.
We demonstrate our approach by working with a version of the
ontology designed to represent the customer care and technical
support center domain as studied within the European project
LUNA (ist-luna.eu), and an updated version of its in-domain
reference corpus.

This paper is structured as follows. Sec. II describes our
approach to ontology modelling and how we interface a
concept ontology to the SLU component of a SDS; Sec. III
illustrates our experiments to analyze ontology relations in a
reference corpus. Sec. IV describes our baseline SLU model
and analyzes the relations between ontology relatedness and
the results of our baseline SLU module. Sec. V reports on
different SLU hypothesis re-ranking experiments based on
ontology relatedness. Finally, Sec. VI discusses future work
and draws conclusions on our study.

II. ONTOLOGY AS A DOMAIN MODEL

While in the past domain modeling for SLU has mainly
relied on ad hoc concepts with domain-dependent relations,
our approach is intended to be generic and portable to other
domains. For this reason, we model ontologies as trees rooted
in an abstract class Concept. Moreover, it appears intuitive
to represent the semantics of a domain in terms of the relations
between the predicates (actions) and the arguments they take
(objects): a notable element of novelty in our model is the
fact that it follows the predicate-argument approach, used so
far for other types of annotation (e.g., FrameNet-based [6]).

Predicate and argument roles of concepts are represented in
our model by two abstract Concept subclasses, PConcept
and AConcept. The former represent predicative concepts,
i.e., concepts which define an action performed on a num-
ber of arguments; for instance, in the LUNA domain,
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HardwareOperation is performed on an instance of
Hardware. Classes of concepts that may only be arguments
of such predicates are subclasses of AConcept; an example
of this in the LUNA domain is Peripheral.

A. Ontology classes

The concept hierarchy of the ontology created for LUNA
contains 32 concept classes, the main ones being illustrated
in Table I. In addition, each class has a number of attributes
(“slots”): for instance, Computer – a Hardware subclass –
has 2 attributes, type (e.g., PC) and brand (e.g., DELL).

TABLE I
TOP CLASSES IN THE LUNA ONTOLOGY TREE AND THEIR FREQUENCY IN

THE REFERENCE CORPUS SPLIT USED AS A TEST SET (REF)

PConcept subclass Example Freq. (REF)
GenericAction calling 49%
HardwareOperation recording 32%
SoftwareOperation launching 11%
GenericOperation replacing 5%
NetworkOperation connecting 2%
HardSoftOperation restarting 1%
DocumentOperation writing 0%
AConcept subclass Example Freq. (REF)
Hardware the printer 19%
Number twelve 36%
User my colleague 15%
Problem printer problem 14%
Institution company X 5%
Time this morning 5%
Software the browser 4%
GraphicalInterface the pointer 2%
Document the folder 1%

The SLU task consists of labeling word sequences as either
concept attributes or null in case they are irrelevant to the
domain; in some cases, SLU also assigns values to concepts,
i.e., generalizations of their surface forms into a predefined
set of classes. For instance, a correct annotation A for turn
t1 =“la nostra stampante non stampa più” (which translates
to: “our printer does not print anymore”) would be:
A = Peripheral.type{printer}{la nostra stampante}
HardwareOperation.negate{}{non}
HardwareOperation.type{to_print}{stampa}
null{}{più}.

B. Ontology Relations

Table II summarizes the six different classes of relations
modelled in the ontology, which are domain-independent and
inspired by classical semantics [7]. Four of these are class-
level, while two (negation and attribute-of) are attribute-
level. Following such relation description, annotation A for
t1 contains: 1) a REL SUPER relation, as there exists a re-
lation between HardwareOperation and Hardware, the
superclass of Peripheral, 2) a NEGATE relation between
the negate and type attributes of HardwareOperation.

C. Ontology Relatedness

The main interest of defining concept relations is evidently
to exploit these to infer a notion of concept “relatedness” and

TABLE II
ONTOLOGY RELATIONS APPLICABLE TO A CONCEPT.ATTRIBUTE PAIR

Class rel. Description Example (a,b)
IS-A (a, b) class b is class a’s super-

class (AConcept only)
(Peripheral,
HardwareComponent)

SUPER (a, b) a and b have same super-
class (AConcept only)

(NetworkComponent,
ExternalDevice)

REL (a, b) a relation is defined be-
tween classes a and b (b
is an AConcept)

(ProblemSoftware,
Software)
(SoftwareOperation,
Software)

REL SUPER (a,
b)

a relation is defined be-
tween class a and class
b’s superclass (b is an
AConcept)

(HardwareOperation,
Peripheral)
(ProblemHardware,
Computer)

Attribute rel. Description Example (x,y)
NEGATE (x, y) x negates y (PConcept

attributes only)
(negate, type) in
HardwareOperation

ATTR-OF (x, y) x and y are attributes
of the same class
(AConcept attributes
only)

(brand, name) in
Peripheral

be able to validate an SLU interpretation. Several schemes
can be defined to formalize such relatedness; as a simple
solution, we defined in [5], a binary pairwise concept related-
ness metric. According to the latter, the relatedness between
two concepts ci and cj , r(ci, cj), is defined as equal to a
constant RMAX if a relation among those defined in Table
II is applicable to (ci, cj), and to 0 otherwise. For instance,
r(ProblemHardware, Software) = 0 as no relation is
defined between ProblemHardware and Software, while
r(ProblemHardware, Peripheral) = RMAX as a
REL SUPER relation holds between ProblemHardware
and Peripheral.

Given a hypothesis H and a concept ci within it, we can
compute the average relatedness of ci with respect to its
neighborhood by averaging the binary relatedness between ci
and the concepts located within a sliding window of size w:

rH
w (ci) =

1
|SH

w (i)|
∑

(ci,cj)∈SH
w (i)

r(ci, cj), (1)

where SH
w (i) denotes the set of concept pairs (ci, cj) s. t.

(j − i) < w in H . If SH
w (i) = ∅, then rH

w (ci) = RMAX .
Hence, given annotation A above, rA

2 (Peripheral.type) =
r(Peripheral.type, HwOp.negate)+r(Peripheral.type, HwOp.type)

2

= RMAX+RMAX

2 = RMAX , then
rA
2 (HwOp.negate) = r(HwOp.negate, HwOp.type)

1 = RMAX ,
and rA

2 (HwOp.type) = RMAX .
Finally, using rH

w (ci), we can define the following utterance-
level relatedness metric, representing the combined relatedness
among the concepts in H:

relw(H) =

∑
ci∈H rH

w (ci)
RMAX

. (2)

In our example, following (2) and choosing w = 2,
rel2(A) = rA

2 (Peripheral.type)+rA
2 (HwOp.negate)+rA

2 (HwOp.type)
RMAX

=
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RMAX+RMAX+RMAX

RMAX
= 1.

The occurrences of ontology relations in our reference
corpus and the distribution of ontology relatedness scores
therein are analyzed in Sec. III.

D. A portable, lightweight approach to domain modeling

An immediate observation that derives from the on-
tology structure is the following: whenever the need
arises to represent a new concept class, we only need
to insert the new class in the most suitable position
within the ontology tree. For instance, if the current ver-
sion of the ontology contains an AConcept subclass
named Hardware, with existing subclasses Computer and
ExternalDevice, we can model a new type of hardware
such as SmartPhone and simply insert it in the ontology
tree as a new subclass of Hardware. By construction,
since the IS-A(SmartPhone,Hardware) relation holds,
SmartPhone will inherit the attributes of Hardware and
all relations which apply to Hardware (involving e.g.,
ProblemHardware, HardwareOperation) will auto-
matically be extended to the new class. This quick operation
allows to extend the ontology to new subdomains without
losing consistency.

Moreover, the process from theoretical domain engi-
neering to the extraction of ontology relations from an
SLU hypothesis is lightweight in our framework. First,
we obtain a direct mapping of the ontology concept tree
(coded in Protégé, protege.stanford.edu) into a class hierar-
chy represented in an object-oriented programming language
(JavaTM in our case). Here, each program class mirrors
an ontology class, directly encoding superclass/subclass re-
lations as well as all relations described as class attributes.
For instance, a HardwareOperation inherits from the
PConcept class, and its attributes include the String
attribute operationType, as well as an instance of class
Hardware. When confronted with a new concept-value
interpretation from SLU, the meta-programming feature of
reflection is used to create an instance of the corresponding
class and exploit its attributes to represent ontology relations.

Consequently, both in terms of design and implementation,
the mapping between the ontology representation and the extra
layer of interpretation represented in the SLU module is auto-
matic, so virtually this makes the ontology exploitable at no
additional cost for an existing SLU module. Another argument
in support of the domain-independence of our approach is
that, given an existing SLU application with a domain-specific
taxonomy (and dataset), the effort required to represent such
taxonomy concepts in terms of an ontology of PConcept and
AConcept subclasses is light but nonetheless allows to take
advantage of relations (and relatedness metrics). Indeed, this is
what we have done to adapt a previously existing taxonomy of
concepts (with associated dataset) from the LUNA project for
the purpose of our experiments (see Sec. III – V). In addition,
the generic relations we defined provide an implicit reasoning
about the domain, while the presence of publicly available
ontologies, either limited to a particular domain (see e.g.

e-tourism.deri.at) or encompassing the whole Semantic Web
[8], can completely remove the burden of domain modeling.

III. REFERENCE CORPUS ANALYSIS

Our reference corpus consists of a set of 727 Human-
Machine (HM) dialogs (resulting in 4500 turns) containing
spontaneous customer requests, recorded by the technical
support center of an Italian company. The dialogs follow one
of ten possible scenarios inspired by the services provided
by the company (e.g., broken printer, email virus) and have
been manually transcribed. Transcriptions have been manually
annotated using the ontology and split into a training and test
set for our statistical SLU model (see Sec. IV). The test set we
are using as the reference corpus for SLU results contains 128
dialogs composed of 714 turns, where 1789 non-null concepts
have been annotated.

A. Distribution of concepts

Figure 1 illustrates the distribution of the concepts in the
reference turns, showing that there are 335 turns carrying at
most one concept (typically greetings and short replies), while
fewer than 20 turns contain more than 10 concepts. Hence,
relw is only applicable to the 359 remaining turns.
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The third column of Table I illustrates the distribution
between different types of AConcept and PConcept in
the reference corpus. The most frequent instances of the
former refer to either Number (as in call codes, tags),
subclasses of Hardware and Problem, and User (callers
identifying themselves or referring to colleagues). The major-
ity of predicative concepts appearing in the corpus refer to
GenericAction, referring to actions such as “checking”
or “re-trying”, while the second most popular PConcept is
HardwareOperation.

B. Distribution of relations and relatedness

The distribution of ontology relations found in the
reference corpus is illustrated in Figure 2(a). While
hypernymy relations (IS-A and SUPER) appear rarely,
the most frequently occurring relations are those
occurring between a PConcept and an AConcept

Fig. 1. Distribution of turns per number of concepts (% in the reference 
corpus and top SLU result 
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or its superclass (such as HardwareOperation
and Computer) or between AConcept (such as
ProblemSoftware and Software). The negation relation
is also well represented (HardwareOperation.negate
- HardwareOperation.operationType).
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(a) Reference
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Fig. 2. Distribution of ontology relations in the reference corpus and in the
top SLU interpretations (AC = AConcept; PC = PConcept)

Figure 3(a) illustrates the coverage of the relatedness metric
relw in the reference corpus for different window sizes.
Coverage is measured in terms of the number of concepts
whose relw falls in each of 10 consecutive relatedness ranges1.
It shows that the most significant part of the concepts in the
reference annotations tend to occur in sentences that exhibit a
high value of relw, and this remains true for any value of
w. However, it can be noted that the ontology relatedness
is not a direct measure of correctness, i.e., not all correct
interpretations fall within the [0.9, 1.0) range. This may be
explained by considering that, in spontaneous conversation,
the concepts mentioned in a sentence need not necessarily be
“related”. For example, in the reference turn t2: “si volevo
sapere come mai non è ancora arrivato il tecnico per una
chiamata che ho fatto ieri” (“yes I’d like to know how come
the technician hasn’t come yet for a call I placed yesterday”),
containing the the concepts User.position (technician)
and Time.relative (yesterday), relMAX = 0.

IV. SPOKEN LANGUAGE UNDERSTANDING

We have used our training and test set in order to train our
statistical model for SLU, which produces a list of hypotheses

1In contrast to our previous experiments [5], we have been focusing on all
the relations defined in Table II.
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Fig. 3. Coverage of relw in the reference corpus (a) and top SLU result (b)
for w varying between 1 and MAX (maximum number of concepts found in
the turn). Each column represents the percentage of concepts whose utterance
relatedness falls within the underlying range for a given value of w

mapping surface words to concepts via Finite State Transduc-
ers (FST) encoding a Stochastic Conceptual Language Model
(SCLM) [5]. Our model composes three transducers: λW , the
FST representation of the input sentence, λW2C , the FST
mapping words to concepts, and λSLM , the SCLM converted
into a FST representing the joint probability of word and
concept sequences. Composition results in the joint model [5]:

λSLU = λW ◦ λW2C ◦ λSLM .

We use the output of λSLM to get semantic chunks re-
alizing the concepts used to extract normalized values. Value
extraction is performed with a deterministic approach based on
hand-crafted rules mapping concept realizations into values.

Having trained λSLU on the training set described above,
we have run it on the test set turns (our reference corpus),
obtaining a ranked list of up to ten interpretations (the baseline
Concept Error Rate of the top interpretation is 24.8% for
attributes and 27.3% for attribute-values, as visible in Table
III). The topmost SLU hypotheses contain 1837 concepts
altogether, 48 more than in the reference; as visible in Figure
1, the distribution of turns per number of concepts is also very
similar to the one in the reference corpus.
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A. Initial statistics

Our first analysis on the SLU results was to assess the distri-
bution of ontology relatedness in the top SLU interpretations;
the latter, reported in Figure 3(b), shows a similar behavior to
the reference corpus (Figure 3(a)). This means that the findings
for the reference are grounded by the SLU interpretation and
encourage us to study the relation between relw and accuracy,
as reported in the concept- and value-based statistics sections.

B. Concept-value Precision and Accuracy

We then plotted the concept-value precision of the top SLU
result against the ontology relatedness range of the latter.
We define concept-value precision as the ratio between the
concept-value pairs found in the SLU hypothesis and the
total number of concept-value pairs annotated in the reference
utterance. Our results, reported in Fig. 4, show that increasing
values of relw actually correspond to an increased concept
precision.
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Fig. 4. Concept value precision of top SLU hypothesis for different w values

As precision is a “bag-of-concept” measurement, we also
measured concept-value accuracy based on the concept-wise
Levenshtein distance between the top SLU interpretation and
the reference. In particular, the accuracy of a concept-value
pair is 1 if the latter occurs in the alignment minimizing the
Levenshtein distance matrix, and 0 otherwise. Fig. 5 illus-
trates the concept-value accuracy for the top SLU hypothesis:
although the values are lower than for a bag-of-words metric
like precision, the behavior is similar to the previous case,
where a growing ontology range is mirrored by a growing
accuracy.

Figures 4 and 5 suggest that relMAX is the choice yielding
highest performances; hence, w = MAX is used in the
forthcoming experiments.

C. Turn-value Accuracy

We also derived a turn-level value accuracy metric from the
Levenshtein edit distance between the SLU interpretation and
the reference annotation. Here, the value accuracy of a turn is
1 if the Levenshtein distance between its concept-value pairs is
0, and 0 otherwise. As an upper bound for turn value accuracy,
we also plotted the performance of the oracle hypothesis, i.e.,
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Fig. 5. Concept value accuracy for different w values

the most similar interpretation to the reference annotation.
Figure 5 shows that after an initial decrease, the turn accuracy
tends to increase with the ontology score, reaching about
68% in the [0.8, 1.0] range. However, accuracy can further
be improved as the oracle result shows.
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Fig. 6. Average turn value accuracy for the SLU hypotheses ranked 1, 2 and
10, and for the oracle hypothesis

V. GROUNDING AND RE-RANKING SLU HYPOTHESES

A “naı̈f” approach to re-ranking SLU interpretations based
on their ontology relatedness consists of examining the top 10
ranks and returning the first interpretation encountered having
a higher relatedness than that of the top rank, or the top rank
itself if no such an interpretation is found. Unfortunately, this
approach does not prove effective, as illustrated in Figure 7
(cf. “RERANK”).

A. Problem statement turns

Further analysis suggests that the turns where ontology
relatedness is most meaningful are the problem statement
turns, i.e., the ones where callers introduce the problem to be
solved. The subsequent turns, which mainly contain answers
to questions posed by the customer care interlocutor, are often
elliptic (i.e., contain no predicates) or require a dialog context
extending beyond the current turn in order to be interpreted.
Indeed, when examining the distribution of ontology related-
ness in the top SLU hypothesis for the first two dialogue turns
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of our corpus, which correspond to the problem statement,
we notice a difference with respect to the subsequent turns.
While the first two turns have a well-distributed relw, the latter
tends to have low values in the subsequent turns except for the
[0.9, 1.0) range, mainly containing ATTR-OF matches (lists of
numbers, user name and surname spelled out, . . . ).

Consequent to these observations, we have tried a “special”
re-ranking, consisting of applying re-ranking only to the first
two turns of each dialog, leaving the others unchanged; how-
ever, only a small improvement could be observed compared
to naı̈f re-ranking and none with respect to the baseline (Fig.
7, “SPECIAL”).
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Fig. 7. Average turn value accuracy for the top SLU hypothesis, after
“naı̈f” re-ranking (RERANK) and after re-ranking only on the first 2 turns
(SPECIAL)

Table III summarizes our findings so far. The loss in turn
accuracy obtained by our best re-ranking model (“SPECIAL”)
is reflected in a decrease in the precision and recall of the re-
ranked system as well as an increase in global CER. Moreover,
the Mean Reciprocal Rank of the top 2 resulting hypotheses
is also slightly lower than in the baseline case.

TABLE III
PRECISION, RECALL AND CER (TOP HYP), MEAN RECIPROCAL RANK

(TOP 2 HYP): BASELINE (FST) AND AFTER RE-RANKING (RR)

Model Precision Recall CER MRR@2
FST concepts 82.0% 84.4% 24.8% 84.9%

values 76.5% 78.9% 27.3% 81.4%
SPECIAL concepts 82.0% 84.1% 26.1% 84.5%

values 76.6% 78.9% 29.4% 81.3%

B. A combined confidence metric

The above-mentioned re-ranking methods do not jointly
exploit the baseline SLU confidence and the ontology based
relatedness. In order to produce a combined confidence metric,
we applied multivariate linear regression (MLR) using oracle
interpretations to estimate the optimal coefficients combining
relMAX and the FST turn-level confidence, cFST . The result-
ing combined confidence metric for a hypothesis H is:

cCOM (H) = α · relMAX(H) + β · cFST (H) + γ.

However, the results of MLR reveal that the ontology’s con-
tribution is negligible: the value for α is −0.001, β = 0.644
and γ = 0.128. Hence, it clearly appears that MLR-based re-
ranking would at best reproduce the original ranking, based
on the cFST (H) parameter.

Based on our current experiments, we can draw the follow-
ing general conclusion: representing concept relations via an
ontology such as the one we have introduced is a valid cri-
terion for grounding the interpretation of a Spoken Language
Understanding system. However, this does not directly imply
that the notion of relatedness based on such an ontology can be
efficiently used to improve the results of any SLU method on
any dataset. We believe that this is due both to intrinsic reasons
and to our specific case. The intrinsic reason is that there exist
correct interpretations showing low ontology relatedness: as
mentioned earlier, not all concepts in an utterance need to be
related (this issue will be taken into account in future work). In
our specific case, we have been dealing with noisy data made
evident by the corpus statistics in relation with the baseline
results of our SLU system (Table III).

VI. CONCLUSIONS AND FUTURE WORK

We research a novel approach to Spoken Language Under-
standing that consists of: 1) representing the domain model of
a SDS via an ontology of predicate and argument concepts, 2)
defining a measure of sentence relatedness based on relations
defined in the ontology, and 3) using such a relatedness to
ground the consistency of interpretations. Based on a corpus
of customer care spoken dialogs, we reinforce our previous
findings that highlighted a relation between correct SLU inter-
pretations and ontology relatedness. In addition, we have found
that the use of ontology relatedness as a re-ranking criterion for
SLU hypotheses does not yield significant improvement (Table
III). We are currently studying how to improve such results
by the joint use of such a relatedness with the baseline model
confidence and we plan to explore data from other domains
to further verify our results.
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