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(1) LIG, Bâtiment IMAG - 700 avenue Centrale - Domaine Universitaire de Saint-Martin-d’Hères

(2) Lattice CNRS, 1 rue Maurice Arnoux, 92120 Montrouge, France

(3) ALMAnaCH Inria, 2 rue Simone Iff, 75589 Paris, France

17 avril 2019

Résumé

During the last couple of years, Recurrent Neural Networks (RNN)
have reached state-of-the-art performances on most of the sequence mo-
delling problems. In particular, the sequence to sequence model and the
neural CRF have proved to be very effective in this domain. In this article,
we propose a new RNN architecture for sequence labelling, leveraging ga-
ted recurrent layers to take arbitrarily long contexts into account, and
using two decoders operating forward and backward. We compare several
variants of the proposed solution and their performances to the state-of-
the-art. Most of our results are better than the state-of-the-art or very
close to it and thanks to the use of recent technologies, our architecture
can scale on corpora larger than those used in this work.

1 Introduction

Sequence modelling is an important problem in NLP, as many NLP tasks can
be modelled as sequence-to-sequence decoding. Among them are POS tagging,
chunking, named entity recognition [1], Spoken Language Understanding (SLU)
for human-computer interactions [2], and also machine translation [3, 4].

In other cases, NLP tasks can be decomposed, at least in principle, in several
subtasks, the first of which is a sequence modelling problem. For instance, syn-
tactic parsing can be performed by applying syntactic analysis to POS-tagged
sentences [5] ; coreference chain detection [6, 7, 8] can be decomposed into men-
tion detection and coreferent mention linking ; and structured named entity
detection [8, 9, 10], can be done by first detecting simple entity components
then combining them to construct complex tree-shaped entities.

Most of these tasks can also be performed by a single model : either as a
joint architecture like the joint model for POS tagging and syntactic analysis
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from [11] or with a fully end-to-end model like the one developed by [12] for
coreference detection. In any case, these models still include at some point a se-
quence modelling module that could be improved by studying successful models
for the related sequence labelling tasks.

This is even more true for neural models, since designing a single complex
neural architecture for a complex problem may indeed lead to sub-optimal lear-
ning. For this reason, it may be more desirable to train a sequence labelling
model alone at first and to learn to perform the other steps using the pre-
trained parameters of the first step’s model, as is done for instance when using
pre-trained lexical embeddings in a downstream model [13, 14]. In that case,
care must be taken to avoid too unrelated downstream tasks that could lead to
Catastrophic forgetting [15], though some hierarchical multi-task architectures
have proven successful [16].

Finally, [17] has shown that it is possible to model syntactic analysis as a
sequence labelling problem by adapting a Seq2seq model. As a consequence, we
could actually design a unified multi-task learning neural architecture for a large
class of NLP problems, by recasting them as sequence decoding tasks.

Recurrent Neural Networks (RNNs) hold state-of-the-art results in many
NLP tasks, and in particular in sequence modelling problems [13, 14, 18, 12].
Gated RNNs such as GRU and LSTM are particularly effective for sequence la-
belling thanks to an architecture that allows them to use long-range information
in their internal representations [19, 20, 21].

In this paper we focus our work to searching for more effective neural models
for sequence labelling tasks such as POS tagging or Spoken Language Understan-
ding (SLU). Several very effective solutions already exist for these problems, in
particular the sequence-to-sequence model [3] (Seq2seq henceforth), the Trans-

former model [22], and the whole family of models using a neural CRF layer on
top of one or several LSTM or GRU layers [20, 21, 13, 14, 23, 24, 25].

We propose an alternative neural architecture to those mentioned above.
This architecture uses GRU recurrent layers as internal memory capable of ta-
king into account arbitrarily long contexts of both input (words and characters),
and output (labels). Our architecture is a variant of the Seq2seq model where
two different decoders are used instead of only one of the original architecture.
The first decoder goes backward through the sequence, outputting label predic-
tions, using the hidden states of the encoder and its own previous hidden states
and label predictions as input. The second decoder is a more standard forward
decoder that uses the hidden states of the encoder, the hidden states and future

predictions generated by the backward decoder and its own previous hidden
states and predictions to output labels. We name this architecture Seq2biseq, as
it generates output sequences from output-wise bidirectional, global decisions.

Our work is inspired by previous work published in [18, 26, 27, 28], where
bidirectional output-wise decisions were taken using a simple recurrent network.
A similar idea, called deliberation network, has been proposed in [29], where
however two forward decoders were used. In this respect we believe that using
a backward decoder for the first pass may encode more different, expressive
information for the second, forward pass. Our architecture takes global decisions
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like a LSTM+CRF model [13] thanks to the use of the two decoders. These
take global context into account on both sides of a given position of the input
sequence.

We compare our solution with state-of-the-art models for SLU and POS-
tagging in particular the models described in [18, 26] and in [13]. In order to
make a direct comparison, we evaluate our models on the same tasks : a French
SLU task provided with the MEDIA corpus [30], and the well-known task of
POS-tagging of the Wall Street Journal portion of the Penn Treebank [31].

Our results are all reasonably close to the state of the art, and most of them
are actually better.

The paper is organized as follows : in the next section we describe the state-
of-the-art of neural models for sequence labelling. In the section 3 we describe
the neural model we propose in this paper, while in the section 4 we describe
the experiments we performed to evaluate our models. We draw our conclusions
in the section 5

2 State of the Art

The two main neural architectures used for sequence modelling are the
Seq2seq model [3] and a group of models where a neural CRF output layer is
stacked on top of one or several LSTM or GRU layers [20, 21, 13, 14, 23, 24, 25].

The Seq2seq model, also known as encoder-decoder, uses a first module to
encode the input sequence as a single vector c. In the version of this model
proposed in [3] c is the hidden state of the encoder after seeing the whole in-
put sequence. A second module decodes the output sequence using its previous
predictions and c as input.

The subsequent work of [4] extends this model with an attention mechanism.
This mechanism provides the decoder with a dynamic representation of the
input that depends on the decoding step, which proved to be more efficient for
translating long sentences.

This mechanism has also been turned out to be effective for other NLP tasks
[12, 32, 33].

Concerning models using a neural CRF output layer [14, 13], a first version
was already described in [1]. These solutions use one or more recurrent hidden
layers to encode input items (words) in context. Earlier simple recurrent layers
like Elman and Jordan [34, 35], which showed limitations for learning long-range
dependencies [36], have been replaced by more sophisticated layers like LSTM
and GRU [20, 21], which reduced such limitations by using gates.

In this type of neural models, a first representation of the prediction is com-
puted with a local output layer. In order to compute global predictions with a
CRF neural layer, the Viterbi algorithm is applied over the sequence of local
predictions [1, 37].

A more recent neural architecture for sequence modelling is the Transformer

model [22]. This model use an innovative deep non-recurrent neural architec-
ture, relying heavily on attention mechanisms [4] and skip connections [38] to
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Figure 1 – Overall network structure

overcome limitations of recurrent networks in propagating the learning signal
over long paths. The Transformer model has been designed for computational
efficiency reasons, but it captures long-range contexts with multiple attention
mechanisms (multi-head attention) applied to the whole input sequence. Skip-
connections guarantee that the learning signal is back-propagated effectively to
all the network layers.

Concerning previous works on the same tasks used in this work, namely
MEDIA [30] and the Penn Treebank (WSJ) [31], several publications have been
produced starting from 2007 (MEDIA) and 2002 (WSJ) [39, 40, 41, 42, 43, 44],
applying several different models like SVM and CRF [45, 46]. Starting from 2013
several works also focused on neural models. At first simple recurrent networks
have been used [47, 48, 49]. In the last few years also more sophisticated models
have been studied [50, 23, 18].

3 The Seq2biseq Neural Architecture

As an alternative to the Seq2seq and LSTM+CRF neural models for se-
quence labelling, we propose in this paper a new neural architecture inspired
from the original Seq2seq model and from models described in [18, 26]. Figure 1
shows the overall architecture.

Our architecture is similar to the Seq2seq model in that we use modules to
encode a long-range context on the output side similar to the decoder of the
Seq2seq architecture. The similarity with respect to models described in [18, 26]
is the use of a bidirectional context on the output side in order to take into
account previous, but also future predictions for the current model decision.
Future predictions are computed by an independent decoder which processes
the input sequence backward.

Our architecture extends the Seq2seq original model through the use of an
additional backward decoder that allows taking into account both past and fu-
ture information at decoding time. Our architecture also improves the models
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described in [18, 26] since it uses more sophisticated layers to model long-range
contexts on the output side, while previous models used fixed-size windows and
simple linear hidden layers. Thanks to these modifications our model makes
predictions informed by a global distributional context, which approximates a
global decision function. We also improve the character-level word representa-
tions by using a similar solution to the one proposed in [14].

Our neural architecture is based on the use of GRU recurrent layers at
word, character and label levels. GRU is an evolution of the LSTM recurrent
layer which has often shown better capacities to model contextual information
[21, 23].

In order to make notation clear, in the following sections, bidirectional GRU

hidden layers are noted GRU, while we use
−−−→
GRU and

←−−−
GRU for a forward and

backward hidden layer respectively. For the output of these layers we use res-

pectively hwi
,
−→
hei and

←−
hei , with a letter as index to specialize the GRU layer

for a specific input (e.g. w for the GRU layer used for words, e for labels, or
entities, and so on), and an index i to indicate the index position in the current

sequence. For example
←−
hei is the backward hidden state, at current position

(i), of the GRU layer for labels. The models described in this work always use
as input words, characters and labels. Their respective embedding matrices are
all noted Ex, with x denoting the different input unit types (e.g. Ew is the
embedding matrix for words), and their dimensions Dx.

3.1 Character-level Representations

The character-level representation of words was computed at first as in [14],
substituting a GRU to the LSTM layer : the characters cw,1, . . . , cw,n of a word
w are first represented as a sequence Sc(w) of n Dc-dimensional embeddings.
These are fed to the GRUc layer. The final state hc(w) is kept as the character
level representation of w.

We improved this module so that it generates a character-level representation
using all the hidden states generated by GRUc :

Sc(w) = (Ec(cw,1), . . . , Ec(cw,n))

(hc(cw,1), . . . , hc(cw,n)) = GRUc(Sc(w), h
c
0)

hc(w) = FFNN(Sum(hc(cw,1), . . . , hc(cw,n)))

(1)

FFNN is again a general, possibly multi-layer Feed-Forward Neural Network
with non-linear activation functions. This new architecture was inspired by [22],
where FFNNs were used to extract deeper features at each layer.

Preliminary experiments have shown that this character-level representation
is more effective than the one inspired by the work of [14].

3.2 Word-level Representations

Words are first mapped into embeddings, then the embedding sequence is
processed by a GRUw bidirectional layer. Using the same notation as for charac-
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ters, a sequence of words S = w1, . . . , wN is converted into embeddings Ew(wi)
with 1 ≤ i ≤ N . We denote Si = w1, . . . , wi the sub-sequence of S up to the
words wi. In order to augment the word representations with their character-
level representations, and to use a single distributed representation, we concate-
nate the character-level representations hc(wi) (eq. 1) to the word embeddings
before feeding the GRUw layer with the whole sequence. Formally :

Sw = (Ew(w1), . . . , Ew(wN ))

Slex = ([Ew(w1), hc(w1)], . . . , [Ew(wN ), hc(wN )])

hwi
= GRUw(S

lex
i , hwi−1

)

(2)

Where we used Sw for the whole sequence of word embeddings generated from
the word sequence S.

In the same way, Slex is the sequence obtained concatenating word em-
beddings and character-level representations, which constitute the lexical-level
information given as input to the model. [ ] is the matrix (or vector) concate-
nation, and we also used the notation Slex

i for the sub-sequence of Slex up to
position i.

3.3 Label-level Representations

In order to obtain label representations encoding long-range contexts, we use
a GRU hidden layer also on label embeddings. We apply first a backward step
on label embeddings in order to compute representations that will be used as
future label predictions, or right context, in the following forward step. Using
the same notation as used previously, we have :

←−
hei =

←−−−
GRUe(El(ei+1),

←−−−
hei+1

) (3)

for i = N . . . 1. We note that here we use the label on the right of the current
position, ei+1, ei is not known at time step i.

The hidden state
←−−−
hei+1

is the hidden state computed at previous position
in the backward step, thus associated to the label on the right of the current

label to be predicted. In other words we interpret
←−
hei as the right context of the

(unknown) label ei, instead of as the in-context representation of ei itself, and

similarly for
←−−−
hei+1

. The right context of ei,
←−
hei , is used to predict ei at time step

i.
In the same way, we compute the representation of the left context of the

label ei by scanning the input sequence forward, which gives :

−→
hei =

−−−→
GRUe(El(ei−1),

−−−→
hei−1

) (4)

for i = 1 . . .N . The neural components described so far are already sufficient
to build rich architectures. However, we believe that the information from the
lexical context is useful not only to disambiguate the current word in-context,
but also to disambiguate the contextual representations used for label prediction.
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Indeed, in sequence labelling labels only provide abstract lexical or semantic
information. It thus seems reasonable to think that they are not sufficient to

effectively encode features in the label context representations
←−
hei and

−→
hei .

For this reason, we add to the input of the layers
←−−−
GRUe and

−−−→
GRUe the

lexical hidden representation hwi
computed by the GRUw layer. Taking this into

account, the computation of the right context for the current label prediction
becomes :

←−
hei =

←−−−
GRUe([hwi

, El(ei+1)],
←−−−
hei+1

) (5)

The computation of the left context is done in a similar way.

This modification makes the layers
←−−−
GRUe and

−−−→
GRUe in our architecture

similar to the decoder of a Seq2seq architecture [3]. The modules
←−−−
GRUe and

−−−→
GRUe are indeed like two decoders from an architectural point of view, but also
they encode the contextual information in the same way using gated recurrent
layers.

However, the full architecture differs from a traditional Seq2seq model by the
use of an additional decoder, capable of modelling the right label context, while
the original model used a single decoder, modelling only the left context. The
idea of using two decoders is inspired mainly by the evidence that both left and
right output-side contexts are equally informative for the current prediction.

Another difference with respect to the Seq2seq model is that the
←−−−
GRUe and

−−−→
GRUe layers have access to the lexical-level hidden states hwi

. This allows these
layers to take the current lexical context into account and is thus more adapted
to sequence labelling than using the same representation of the input sentence
for all the positions, which is the solution of the original Seq2seq model.

As we mentioned above, the Seq2seq model has been improved with an at-
tention mechanism [4], which is another way to provide the model with a lexical
representation focusing dynamically on different parts of the input sequence
depending on the position i. This attention mechanism has also proved to be
efficient for sequence labelling, and it might be that our architecture could be-
nefit from it too, but this is out of our scope for this article and we leave it for
future work. 1

We can motivate the use of the lexical information hwi
in the decoders

←−−−
GRUe

and
−−−→
GRUe with complex systems theory considerations, as suggested in [51].

[52] state that a complex system, either biological or artificial, is not equal to
the sum of its components. More precisely, the behaviour of a complex system
evolves during its existence and shows the emergence of new functionalities,
which can not be explained by simply considering the system’s components
individually. [53] qualitatively characterizes the evolution of a complex system’s
behaviour with three different types of adaptation, two of which are particularly
interesting in the context of this work and can be concisely named aggregation

and specialization.
In the first, several components of the system adapt in order to become a

single aggregated component from a functioning point of view. In specialization,

1. This is currently in progress
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several initially identical components of the system adapt to perform different
functionalities. These adaptations may take place at different unit levels, a neu-
ron, a simple layer, or a whole module.

The most evident cases of specialization are the gates of the LSTM or GRU
layers [21], as well as the attention mechanism [4]. Indeed, the z and r gates of a
GRU recurrent layer are defined in the exact same way, with the same number
of parameters, and they use exactly the same input information.

However, during the evolution of the system — that is, during the learning
phase — the r gate adapts (specialises) to become the reset gate, which allows
the network to forget the past information, when it is not relevant for the current
prediction step. In the same way, the z gate becomes the equivalent of the input
gate of a LSTM, which controls the amount of input information that will affect
the current prediction.

In our neural architecture we can observe aggregation : the layers
←−−−
GRUe

and
−−−→
GRUe adapt at the whole layer level, they become like gates which filter

label-level information that is not useful for the current prediction. In the same
way as the input to gates of GRU or LSTM is made of current input and

previous hidden state, the input to the
←−−−
GRUe and

−−−→
GRUe layers is made of

lexical level and previous label level information, both needed to discriminate
the abstract semantic information provided by the labels alone. We will show
in the evaluation section the effectiveness provided by this choice.

While both of the two decoders used in our models are equivalent to the
decoder of the original Seq2seq architecture, we believe it is interesting to analyse
the contribution of each piece of information given as input to this component,
which we will show in the evaluation section.

3.4 Output Layer

Once all pieces of information needed to predict the current label are com-
puted, the output of the backward step is computed as follows :

obw = Wbw [hwi
,
←−
hei ] + bbw

ei = argmax(log-softmax(obw))
(6)

We start the backward step using a conventional symbol (<EOS>) as end-of-
sentence marker. We repeat the backward step prediction for the whole input
sequence. The process is shown in figure 2.

This allows to have all the pieces of information needed to predict the current
label in the forward step, at character and word level, but also at right and left
label context level, with respect to the current position to be labeled :

oi = Wo[
−→
hei , hwi

,
←−
hei ] + bo

ei = argmax(log-softmax(oi))
(7)

A high-level schema of the forward pass is shown in figure 3.
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Figure 2 – Structure of the backward decoder
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←−−−−−
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−−−−−→
decoder

−−−−−→
decoder

−−−−−→
decoder

−→e1
−→e2

−→e3

Figure 3 – High-level schema of the forward pass

The log-softmax function computes log-probabilities and it is thus suited for
the loss-function used to learn the model described in the next section.

We note that the forward decoder is in fact a bidirectional decoder, as it uses

both backward and forward hidden states
−→
hei and

←−
hei for the current prediction.

The hypothesis motivating the architecture of our neural models is the fol-
lowing : gated hidden layers such as LSTM and GRU can keep relatively long
contexts in memory and to extract from them the information that is relevant to
the current model prediction. This is supported by the findings in recent works,
such as [54], which shows that most of the modelling power of gated RNN comes
from their ability to compute at each step a context-dependent weighted sum
on their inputs, in a way that is akin to dynamical attention mechanism. As an
immediate consequence, we think that using such hidden layers is an effective
way to keep in memory a relatively long context on the output item level, that is
labels, as well as on the input item level, that is words, characters and possibly
other information.

An alternative, non-recurrent architecture, the Transformer model [22] has
been proposed with the goal of using attention mechanisms to overcome the lear-
ning issues of RNN in contexts where the learning signal has to back-propagate
through very long paths. However, the recent work of [55] shows that integrating
a concept of recurrence in Transformers can improve their performances in some
contexts. This leads us to believe that recurrence is a fundamental feature for
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neural architectures for NLP and all of the domains where data are sequential
by nature.

As a side note, the main features of the Transformer model - the multi-
head attention mechanism and the skip connections [22] - could in principle be
integrated into our architecture. Investigations of the costs and benefits of such
additions is left for future work.

Finally, while the decision function of our model remains local, its decisions
are informed by global information at the word, character and label level thanks
to the use of long-range contexts encoded by the GRU layers. In that sense, it can
be interpreted as an approximation of a global decision function and provides a
viable alternative to the use of a CRF output layer [13, 14].

3.5 Learning

Our models are learned by minimizing the negative log-likelihood LL with
respect to the data. Formally :

− LL(Θ|D) = −

|D|∑

d=1

Nd∑

i=1

1

2
(log-p(−→ei ) + log-p(←−ei )) +

λ

2
|Θ|

2
) (8)

log-p(−→ei ) and log-p(←−ei ) are the log-probabilities over predictions of the forward
and backward decoders, respectively, we thus strengthen the global character
of our model’s predictions. The first sum scans the learning data D of size |D|,
while the second sum scans each learning sequence Sd, of size Nd.

Given the relatively small size of the data we use for the evaluation, and the
relatively high complexity of the models proposed in this paper, we add a L2

regularization term to the cost function with a λ coefficient. The cost-function
is minimized with the Back-propagation Through Time algorithm (BPTT) [19],
provided natively by the Pytorch library (see section 4.2).

4 Evaluation

4.1 Data

We evaluate our models on two tasks, one of Spoken Language Understan-
ding (SLU), and one of POS tagging, namely MEDIA and WSJ respectively.
These tasks have been widely used in the literature [49, 23, 18, 14, 56] and allow
thus for a direct comparison of results.

The French MEDIA corpus [30] was created for the evaluation of spoken
dialog systems in the domain of hotel information and reservation in France. It is
made of 1 250 human-machine dialogs acquired with a Wizard-of-OZ approach,
where 250 users followed 5 different reservation scenarios.

Data have been manually transcribed and annotated with domain concepts,
following a rich ontology. Semantic components can be combined to build rela-
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MEDIA corpus example
Words Classes Labels

Oui - Answer-B
l’ - BDObject-B

hotel - BDObject-I
le - Object-B

prix - Object-I
à - Comp.-payment-B

moins relative Comp.-payment-I
cinquante tens Paym.-amount-B

cinq units Paym.-amount-I
euros currency Paym.-currency-B

Table 1 – An example of sentence with its semantic annotation and word
classes, taken from the French corpus MEDIA. The translation of the sentence
in English is “Yes, the hotel with a price less than fifty euros per night”

Training Validation Test

# sentences 12 908 1 259 3 005

Words Concepts Words Concepts Words Concepts

# words 94 466 43 078 10 849 4 705 25 606 11 383
# dict. 2 210 99 838 66 1 276 78
# OOV% – – 1,33 0,02 1,39 0,04

Table 2 – Statistics on the French MEDIA corpus

tively complex semantic classes. 2

Statistics on the training, development and test data of the MEDIA corpus
are shown in table 2. The MEDIA task can be modelled as a sequence label-
ling task by segmenting concepts over words with the BIO formalism [57]. An
example of sentence with its semantic annotation is shown in table 1. For ex-
haustive, we also show some word-classes available for this task, allowing models
for a better generalization. However, our model does not use these classes, as
explained in section 4.2.

The English corpus Penn Treebank [31], and in particular the section
of the corpus corresponding to the articles of Wall Street Journal (WSJ), is one
of the most known and used corpus for the evaluation of models for sequence
labelling.

The task consists of annotating each word with its Part-of-Speech (POS)
tag. We use the most common split of this corpus, where sections from 0 to 18
are used for training (38 219 sentences, 912 344 tokens), sections from 19 to 21
are used for validation (5 527 sentences, 131 768 tokens), and sections from 22
to 24 are used for testing (5 462 sentences, 129 654 tokens).

4.2 Experimental settings

In order to keep our architecture as general as possible, we limit our model
inputs to the strict word (and character) information available in the raw text

2. For example, the label localisation can be combined with the components ville (city),
distance-relative (relative-distance), localisation-relative-générale (general-relative-
localisation), rue (street), etc.
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data and ignore the additional features available in the MEDIA dataset.
For convenience, the hyperparameters of our system have been tuned by

simple independent linear searches on the validation data — rather than a grid
search on the full hyperparameters space.

All of the parameters of neural layers are initialised with the Pytorch 0.4.1
default initializers 3 and trained by SGB with a 0.9 momentum for 40 epochs on
MEDIA, and ADAM optimizer for 52 epochs on WSJ, keeping the model that
gave the best accuracy on the development data set.

For training, we start with a learning rate of 0.125 that we decay linearly
after each epoch to end up at 0 at the end of the chosen number of training
epochs. Following [59], we also apply a random dropout to the embeddings and
the output of the hidden layers that we optimized to a rate of 0.5, and L2

regularization to all the parameters with an optimal coefficient of 10−4.
Finally, we have conducted experiments to find the optimal layer sizes, which

gave us 200, 150 and 30 for word, labels and character embeddings respectively,
100 for the GRUc layer and 300 for all the other GRU layers. Those values are
for the MEDIA task ; for WSJ only the word embeddings and hidden layer sizes
(respectively 300 and 150) are different.

In order to reduce the training time, we use mini-batches of size 4 100. In
the current neural network frameworks, all the sequences in a mini-batch must
have the same length, which we enforced at first by padding all of the sentences
with the conventional symbol <s> to the length of the longest one. However
this caused two problems : first, there are a few unusually long sentences in the
datasets we used, for instance, there is a single sentence of 198 words in MEDIA.
Secondly, in order to compute automatically the gradients of the parameters,
Pytorch keeps in memory the whole graph of operations performed on the input
of the model [60], which was far too large for the hardware we used, since for
our model, we have to keep track of all the operations at all of the timesteps.

We found two solutions to these problems. The first was to train on fixed-
length, overlapping sub-sequences, or segments 5, truncated from the whole sen-
tences, which did not appear to impair the performances significantly and allo-
wed us to avoid more involved solutions such as back-propagation through time
with memorization [61]. The second was to cluster sentences by their length.
This makes small clusters for unusually long sentences, which fit thus in me-
mory, and big clusters of average-length sentences, which are further split into
sub-clusters to have an optimal balance between the learning signals of different
clusters, and alleviate us to find adaptive learning rates for different clusters.

In the optimization phase, we found out that the first solution works far
better for the MEDIA task. We believe that this is due to the noisy nature of
the corpus (speech transcription), and to its relatively small size Using fixed-
length segments reduces the amount of noise the network must filter, while the
fact that segments shift and overlap makes the network more robust, as it can

3. Uniform random initialization for the GRU layers and [58] initialization for the linear
layers.

4. Using larger batches is faster but degrades the overall accuracy.
5. Shifting each segment one token ahead with respect to the previous
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see any token as the beginning of a segment, which in turns helps overcoming
scarcity of the dataset. This robustness is not needed when using bigger amount
of grammatically well-formed textual data, like the WSJ corpus. Indeed the two
solutions gave similar results on this corpus, we thus preferred sentence clusters
which is a more intuitive solution and may better fit bigger data sets.

After performing these optimization on the development set for each task,
we kept the best models and evaluated them on the corresponding test sets,
which we report and discuss in the next section.

All of our development and experiments were done on 2,1 GHz Intel Xeon

E5-2620 CPUs and GeForce GTX 1080 GPUs. 6.

4.3 Results

Results presented in this section on the MEDIA corpus are means over 10
runs, while results on the WSJ corpus are obtained in a single run, as it seems
the most common practice. 7

Concerning the MEDIA task, since the model selection during the training
phase is done based on the accuracy on the development data, we show accuracy
in addition to F1 measure and Concept Error Rate (CER) as it is common
practice in the literature on this task. F1 measure is computed with the script
made available to the community for the CoNLL evaluation campaign. 8. CER
is computed by Levenshtein alignment between reference annotation and model
hypothesis, with an algorithm much similar to the one implemented in the sclite
toolkit. 9

Since our model is similar to Seq2seq model, but it uses two decoders, in
the remainder of this paper our model will be named Seq2Biseq. The model
training is performed using gold labels in the training data, while in test phase
the model uses predicted labels to build left and right label-level contexts. This
corresponds to the best strategy, according to [47].

We compare our results to those obtained by running the software developed
for [18] 10 and tuning its hyperparameters 11.

Concerning our hypothesis about the capability of our models to encode a
long-range context, and to filter out useless information with respect to the cur-
rent labelling decision, we show results of two (sets of) experiments to validate
such hypothesis.

In the first one, we compare the results obtained by models with and without

the use of the lexical information as input to the decoders
←−−−
GRUe and

←−−−
GRUe

(section 3.3). These results are shown in the first two lines of the table 3. The
model using the lexical information is indicated with Seq2Biseqle in the table (for

6. 1600 MHz, 2560 cores
7. We can note that results over different runs on the WSJ have a very small variation,

less or equal to 0.01 accuracy points
8. https://github.com/robertostling/efselab/blob/master/3rdparty/conlleval.perl

9. http://www1.icsi.berkeley.edu/Speech/docs/sctk-1.2/sclite.htm

10. Available upon request at http://www.marcodinarelli.it/software.php
11. The optimal settings being more or less those provided in the original article
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Model Accuracy F1 measure CER

MEDIA DEV

Seq2Biseq 89.11 85.59 11.46
Seq2Biseqle 89.42 86.09 10.58
Seq2Biseqle seg-len 15 89.97 86.57 10.42
fw -Seq2Biseqle seg-len 15 89.51 85.94 11.40

Table 3 – Comparison of results on the development data of the MEDIA corpus,
with and without the lexical information (Seq2Biseqle) as input to the modules
←−−−
GRUe and

←−−−
GRUe

labels and lexical information). As we can see in the table, this model obtains
much better results than the one not using the lexical information as input to
the label decoders. This confirms that this information helps discriminating the
semantic information provided by labels at a given processing step of the input
sequence.

In the second experiment, we test the capability of our models to filter out
useless semantic information, that is on the label side, for the current labelling
decision. In order to do this, we increase the size of the segments in the learning
phase : 15 instead of 10 by default. It is important to note that in the context
of a SLU task, where input sequences are transcriptions of human speech, using
longer segments is possibly risky, since a longer context may be much more noisy
even if it is slightly more informative.

Moreover, the models in the literature applied to the MEDIA task and using
a fixed-size window to capture contextual information, never use a window wi-
der than 3 tokens around the current token to be labelled. This confirms the
difficulty to extract useful information from a longer context. Results of this ex-
periment are shown in the third line of table 3. Our hypothesis seems to be also
valid in this case, as models using segments of length 15 obtain better results
than those using the default size of 10 and this with respect to all the evaluation
metrics.

We note that, while the effectiveness of the decoder’s architecture of the
Seq2seq model does not need any more to be proved, these results still provide
possibly interesting analyses in the particular context of sequence labelling. 12

In order to show the advantage provided by the use of two decoders instead
of only one like in the original Seq2seq model, we show results obtained using
only one decoder for the left label-side context in table 3 These results are
indicated in the table with fw-Seq2Biseqle seg-len 15 (this model corresponds
basically to the original Seq2seq). This model is exactly equivalent to our best
model Seq2Biseqle seg-len 15, the only difference is that it uses only the left
label context. As we can see, this model is much less effective than the version
using two decoders, which also confirms that the right context on the output
side (labels) is very informative.

12. The Seq2seq model has been designed and mainly used for machine translation
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Model Accuracy F1 measure CER p-value

MEDIA DEV

LD-RNNdeep 89.26 (0.16) 85.79 (0.24) 10.72 (0.14) –
Seq2Biseqle seg-len 15 89.97 (0.20) 86.57 (0.22) 10.42 (0.26) 0.043
Seq2Biseq2-opt 90.22 (0.14) 86.88 (0.16) 9.97 (0.24) –

MEDIA TEST

LD-RNNdeep 89.51 (0.21) 87.31 (0.19) 10.02 (0.17) –
Seq2Biseqle seg-len 15 89.57 (0.12) 87.50 (0.17) 10.26 (0.19) 0.047
Seq2Biseq2-opt 89.79 (0.22) 87.69 (0.20) 9.93 (0.28) –

Table 4 – Comparison of results obtained on the MEDIA corpus by the system
LD-RNNdeep, ran by ourselves for this work, and our model Seq2Biseqle, using
segments of size 15 (see section 4.2).

Our hypothesis concerning the aggregation specialization of our model du-
ring the learning phase seems also confirmed (section 3.3). The fact that the
Seq2Biseqle model obtains better results than the simpler model Seq2Biseq
tends to confirm the hypothesis.

Indeed, if the model Seq2Biseqle gave more importance to the lexical infor-
mation than the semantic information given by labels at the input of the deco-

ders
←−−−
GRUe and

−−−→
GRUe, its better results would not have a clear explanation,

as both Seq2Biseqle and Seq2Biseq models (table 3) use the lexical information
separately (indicated with hwi

in the equation 2).
Since the information provided by labels alone is already taken into account

by the model Seq2Biseq, we can deduct that the Seq2Biseqle model can extract
more effective semantic representations, and this even when we provide it with
longer contexts (with segments of size 15).

In another set of experiments, we compared our model with the one proposed
in [18], from which we inspired our neural architecture. We downloaded the
software associated to the paper 13, and we ran experiments on the MEDIA
corpus in the same conditions as our experiments. We used the deep variant
of the model described in [18], LD-RNNdeep, which gives the best results on
MEDIA. The results of these experiments are shown in the table 4. As we can
see in the table, on the development data of the MEDIA task (MEDIA DEV),
our model is more effective than the LD-RNNdeep of [18], which holds the state-
of-the-art on this task. These gains are also present for the test data (MEDIA
TEST), even if they are smaller, and the LD-RNNdeep model is still the more
effective in terms of Concept Error Rate (CER).

We would like to underline that we did not perform an exhaustive optimi-
zation of all the hyper-parameters. 14 As we can see in table 4, results obtained

13. Described at http://www.marcodinarelli.it/software.php and available upon request
14. This because it takes a lot of time, but more importantly because we believe a good

model should give good results without too much effort, otherwise a previous model which
already proved comparably effective should be preferred

15
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Model Accuracy F1 measure CER

MEDIA TEST

BiGRU+CRF [18] – 86.69 10.13
LD-RNNdeep [18] – 87.36 9.8
LD-RNNdeep 89.51 87.31 10.02
Seq2Biseqle seg-len 15 89.57 87.50 10.26
Seq2Biseq2-opt 89.79 87.69 9.93

Table 5 – Comparison of results on MEDIA with our best models and the best
models in the literature

with the model LD-RNNdeep on the test data are always better than those
obtained on the development data. In contrast, our model obtains a worse ac-
curacy, which leads the model selection in the training phase, on the test data.
This lack of generalization may indicate a sub-optimal parameter choice or an
over-training problem.

In the table 4 we also report standard deviations on the 10 experiments
(between parentheses), and the results of the significance tests performed on the
output of our model and of the model LD-RNNdeep. We used the significance
test described in [62], which applies on the output of the two compared systems,
and it is suited for the evaluation metrics used most often in NLP. 15 We re-
implemented the significance test script based on the one described in [63]. 16

Our model is compared to the LD-RNNdeep model in terms of F1 measure,
which is more constraining than the accuracy and as constraining as the CER.
The result of the significance test is given in the column p-value of the table,
and it represents the probability that the gain is not significant. Most often the
gains are considered significant with a p-value equal or smaller than 0.05.

We ran another set of experiments on the MEDIA task with our best model
in order to compare to the best models in the literature on this task, which
are those described in [18]. In particular we compared our results to the models
using a neural CRF output layer for modelling label sequences and take global
decisions.

The results of these experiments are shown in the table 5. In this table we
indicate simply with LD-RNNdeep the results obtained in our experiments using
the software LD-RNN 17, while we add the reference [18] after LD-RNNdeep to
indicate that results have been taken directly from the reference. As we can
see, the only new outcome in this table with respect to those already shown
in previous tables, is the best CER of 9.8 obtained by the model LD-RNNdeep

published in [18]. These results are obtained however using also the word-classes
available with the MEDIA corpus. Our model is still more effective than the
others in terms of accuracy and F1 measure, providing thus the new state-of-

15. In contrast to several other significance tests, this test doesn’t make any assumption on
the classes independence, nor on the representative coverage of the sample
16. https://nlpado.de/~sebastian/software/sigf.shtml

17. http://www.marcodinarelli.it/software.php
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Model Accuracy

WSJ DEV WSJ TEST

LD-RNNdeep 96.90 96.91
LSTM+CRF [14] – 97.13
Seq2Biseq 97.13 97.20
Seq2Biseq2-opt 97.33 97.35

LSTM+CRF + Glove [14] 97.46 97.55
LSTM+LD-RNN + Glove [56] – 97.59

Table 6 – Comparison of our model with the model LD-RNNdeep, and the best
models of the literature, on the POS tagging task of the WSJ corpus

the-art results on this task.
The experiments performed on the MEDIA task with different variants of

our model allowed us to find the best neural architecture for sequence modelling.
In order to have a more general view on the effectiveness of our model on the
problem of sequence labelling, we performed some experiments of POS tagging
on the WSJ corpus, which is a well-known benchmark for sequence labelling,
used since more than 15 years. In order to show the effectiveness of the model
alone, without the impact of any external resources, we performed experiments
without using pre-trained embeddings. This is however a quite common practice
and can lead to remarkable improvements [14].

On this task we compare to the model LD-RNNdeep of [18], and to the
model LSTM-CRF of [14]. To the best of our knowledge the latter is one of
the rare work on neural models where results are given also without pre-trained
embeddings, allowing a direct comparison. The LSTM-CRF model is moreover
one of the best models on the WSJ corpus when using embeddings pre-trained
with GloVe [64].

The results of the POS tagging task on the WSJ corpus are shown in the
table 6. As we can see our model obtains the best results among those not
using any pre-trained embeddings. Our results are however worse than those
obtained with pre-trained embeddings, which constitute the state-of-the-art on
this task. In this respect, we would like to underline that the overall best results
are obtained with a neural model described in [56]. This model is only slightly
better than the LSTM-CRF model, which we outperform when not using pre-
trained embeddings. Moreover the model proposed in [56] (LSTM+LD-RNN in
the table) is very similar to our model.

In order to compare our model to the model LD-RNNdeep also in terms of
complexity and computation efficiency, we show in the table 7 the number of
parameters as well as the training time on the MEDIA and WSJ corpora. For
the sake of completeness, we also report the number of parameters of the other
models mentioned in this paper. Except for the model GRU+CRF for which
we took the number of parameters from the reference [18] (hidden layers of size
200), all the other numbers are computed based on the same layer sizes.
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Model # of parameters Training time

MEDIA MEDIA WSJ

Seq2Biseqle 2,139,950 3h30’ 16h-17h
LD-RNNdeep 2,551,700 1h30’ > 6 days

GRU+CRF [18] 2,328,360 – –
Seq2seq 1,703,450 – –
Seq2seq+Att. 2,244,050 – –

Table 7 – Comparison of the neural models proposed or mentioned in this
paper, in terms of number of parameters, and of training time for our model
and the the model LD-RNNdeep

We can see in the table 7 that the training time for our model is longer than
for the model LD-RNNdeep on the MEDIA task. This is because our neural
architecture is quite more complex, and since the corpus is relatively small, we
can not fuly take advantage of GPU parallelism.

This is confirmed on the WSJ corpus, where the training time of our model
is much smaller than the time needed by the LD-RNNdeep model, despite this
corpus is quite bigger than MEDIA. 18 The time needed for testing are not
reported in the table, we can note that they are negligible for both models, as
it never exceeded a few minutes

While the results described in this paper can be considered satisfactory,
considering the complexity of our neural network with respect to the LD-
RNNdeep model, we were surprised to find out that the gains were not larger on
the MEDIA task. At first we thought that our network suffered from overfitting
on such a small task, and given the complexity of our network, nothing could
be done to solve this problem beyond reducing the total number of parame-
ters. However, after a quick analysis of the output of our model on the MEDIA
development data, we found clear signs revealing that our model was actually
ignoring the learning signal coming from the backward decoder (eq. 6).

Since our neural network was explicitly designed to take both left and right
label-side contexts into account, we thought that the problem was coming from
the learning phase. In particular we thought that our model was underfitting
due to the problem of very-long back-propagation paths described in [22], and
which motivated the design of the Transformer model, without recurrent layers
and with skip connections to enforce the back-propagation of the learning signal.
We adopted a different approach : we applied two different optimizers to the
two decoders, one for a negative log-likelihood computed with the output of
the backward decoder (only log-p(←−ei ), see eq. 6), and another one for the global
negative log-likelihood computed from the output of both forward and backward
decoders (see equation 8). We note that the forward decoder also uses predictions
and hidden states of the backward decoder, the second optimizer thus also refines

18. The model LD-RNNdeep is coded in Octave, and while it can run on GPUs, this frame-
work is not fully optimized to scale on GPUs
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the parameters of the backward decoder with left, forward information.
We ran new experiments in exactly the same conditions as described before,

the only difference being that we used these two optimizers. The final results
are reported in table 4 for MEDIA and in the table 6 for the WSJ, where the
model learned using two optimizers is indicated with Seq2Biseq2-opt.

As we can see in the tables, the results improved on both tasks, on both
development and test data, and in terms of all the evaluation metrics. To the
best of our knowledge, the results obtained on MEDIA are the best on this task,
except for the CER where the model LD-RNNdeep using class features is still
the best (9.8 vs. our 9.93 on the test set). Also, the results obtained on the
WSJ corpus are the best obtained without any external resource and without
pre-trained embeddings. We leave the integration of pre-trained embeddings as
future work.

5 Conclusions

In this article, we propose a new neural architecture for sequence modelling
heavily based on GRU recurrent hidden layers. We use these layers to encode
long-range contextual information at several levels : words, characters and labels.

Our main contributions are the use of two different decoders for label pre-
diction, one modelling a backward (future, or right) label context, and one for
a forward label context. The combination of the two contexts allow our model
to take labelling decisions informed by a global context, approximating a global
decision function. Another contribution is the use of two different optimizers
to optimize separately the two decoders. This improves even further the results
obtained on the two evaluation tasks studied in this work.

The results obtained are state-of-the-art on the MEDIA task. On the POS
tagging task of the WSJ corpus, our results are state-of-the-art if we do not
consider the models that use pre-trained word embeddings, and still close to the
state-of-the-art if we do so.
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Références

[1] Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa,
P. : Natural language processing (almost) from scratch. J. Mach. Learn.
Res. 12 (2011)

19



[2] De Mori, R., Bechet, F., Hakkani-Tur, D., McTear, M., Riccardi, G., Tur,
G. : Spoken language understanding : A survey. IEEE Signal Processing
Magazine 25 (2008) 50–58

[3] Sutskever, I., Vinyals, O., Le, Q.V. : Sequence to sequence learning with
neural networks. In : Proceedings of NIPS, Cambridge, MA, USA, MIT
Press (2014)

[4] Bahdanau, D., Cho, K., Bengio, Y. : Neural machine translation by jointly
learning to align and translate. CoRR abs/1409.0473 (2014)

[5] Collins, M. : Three generative, lexicalised models for statistical parsing.
In : Proceedings of ACL, Stroudsburg, PA, USA, Association for Compu-
tational Linguistics (1997) 16–23

[6] Soon, W.M., Ng, H.T., Lim, D.C.Y. : A Machine Learning Approach to
Coreference Resolution of Noun Phrases. Computational Linguistics 27
(2001) 521–544

[7] Ng, V., Cardie, C. : Improving Machine Learning Approcahes to Corefrence
Resolution. In : Proceedings of ACL’02. (2002) 104–111

[8] Grouin, C., Dinarelli, M., Rosset, S., Wisniewski, G., Zweigenbaum, P. : Co-
reference resolution in clinical reports. the limsi participation in the i2b2/va
2011 challenge. In : In Proceedings of i2b2/VA 2011 Coreference Resolution
Workshop. (2011)

[9] Dinarelli, M., Rosset, S. : Tree representations in probabilistic models for
extended named entity detection. In : European Chapter of the Association
for Computational Linguistics (EACL), Avignon, France (2012) 174–184

[10] Dinarelli, M., Rosset, S. : Tree-structured named entity recognition on ocr
data : Analysis, processing and results. In Chair), N.C.C., Choukri, K., De-
clerck, T., Dogan, M.U., Maegaard, B., Mariani, J., Odijk, J., Piperidis, S.,
eds. : Proceedings of the Eight International Conference on Language Re-
sources and Evaluation (LREC’12), Istanbul, Turkey, European Language
Resources Association (ELRA) (2012)

[11] Rush, A.M., Reichart, R., Collins, M., Globerson, A. : Improved parsing
and pos tagging using inter-sentence consistency constraints. In : Procee-
dings of EMNLP-CoNLL, Stroudsburg, PA, USA (2012)

[12] Lee, K., He, L., Lewis, M., Zettlemoyer, L. : End-to-end neural coreference
resolution. In : Proceedings of EMNLP, Association for Computational
Linguistics (2017)

[13] Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer,
C. : Neural architectures for named entity recognition. arXiv preprint
arXiv :1603.01360 (2016)

[14] Ma, X., Hovy, E. : End-to-end sequence labeling via bi-directional lstm-
cnns-crf. In : Proceedings of ACL. (2016)

[15] Kemker, R., McClure, M., Abitino, A., Hayes, T.L., Kanan, C. : Measu-
ring catastrophic forgetting in neural networks. In : Thirty-Second AAAI
Conference on Artificial Intelligence. (2018)

20



[16] Augenstein, I., Ruder, S., Søgaard, A. : Multi-task learning of pairwise
sequence classification tasks over disparate label spaces. In : Proceedings
of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics : Human Language Technologies, Volume
1 (Long Papers), Association for Computational Linguistics (2018) 1896–
1906

[17] Vinyals, O., Kaiser, L., Koo, T., Petrov, S., Sutskever, I., Hinton, G.E. :
Grammar as a foreign language. CoRR abs/1412.7449 (2014)

[18] Dinarelli, M., Vukotic, V., Raymond, C. : Label-dependency coding in
Simple Recurrent Networks for Spoken Language Understanding. In : In-
terspeech, Stockholm, Sweden (2017)

[19] Werbos, P. : Backpropagation through time : what does it do and how to
do it. In : Proceedings of IEEE. Volume 78. (1990) 1550–1560

[20] Hochreiter, S., Schmidhuber, J. : Long short-termmemory. Neural Comput.
9 (1997) 1735–1780

[21] Cho, K., van Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H.,
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Moschitti, A., Ney, H., Riccardi, G. : Comparing stochastic approaches to
spoken language understanding in multiple languages. IEEE TASLP 99
(2010)

[42] Dinarelli, M. : Spoken Language Understanding : from Spoken Utterances
to Semantic Structures. PhD thesis, International Doctoral School in In-
formation and Communication Technology, Dipartimento di Ingegneria e
Scienza dell’ Informazione, via Sommarive 14, 38100 Povo di Trento (TN),
Italy (2010)

[43] Dinarelli, M., Rosset, S. : Hypotheses selection criteria in a reranking
framework for spoken language understanding. In : Conference of Empirical
Methods for Natural Language Processing, Edinburgh, U.K. (2011) 1104–
1115

22



[44] Dinarelli, M., Moschitti, A., Riccardi, G. : Discriminative reranking for
spoken language understanding. IEEE TASLP 20 (2011) 526–539

[45] Vapnik, V.N. : Statistical Learning Theory. John Wiley and Sons (1998)

[46] Lafferty, J., McCallum, A., Pereira, F. : Conditional random fields : Proba-
bilistic models for segmenting and labeling sequence data. In : Proceedings
of ICML, Williamstown, USA (2001)

[47] Mesnil, G., He, X., Deng, L., Bengio, Y. : Investigation of recurrent-neural-
network architectures and learning methods for spoken language unders-
tanding. In : Interspeech. (2013)

[48] Yao, K., Zweig, G., Hwang, M.Y., Shi, Y., Yu, D. : Recurrent neural
networks for language understanding, Interspeech (2013)

[49] Vukotic, V., Raymond, C., Gravier, G. : Is it time to switch to word em-
bedding and recurrent neural networks for spoken language understanding ?
In : InterSpeech. (2015)

[50] Yao, K., Peng, B., Zhang, Y., Yu, D., Zweig, G., Shi, Y. : Spoken language
understanding using long short-term memory neural networks, IEEE (2014)

[51] Wang, C. : Network of recurrent neural networks. CoRR abs/1710.03414
(2017)

[52] Holland, J.H. : Emergence : From Chaos to Order. Perseus Publishing
(1999)

[53] Arthur, W.B. : On the evolution of complexity. Working papers, Santa Fe
Institute (1993)

[54] Levy, O., Lee, K., FitzGerald, N., Zettlemoyer, L. : Long short-term me-
mory as a dynamically computed element-wise weighted sum. In : Procee-
dings of ACL. (2018)

[55] Dehghani, M., Gouws, S., Vinyals, O., Uszkoreit, J., Kaiser, L. : Universal
transformers. CoRR abs/1807.03819 (2018)

[56] Zhang, Y., Chen, H., Zhao, Y., Liu, Q., Yin, D. : Learning tag dependen-
cies for sequence tagging. In : International Joint Conference on Artificial
Intelligence (IJCAI). (2018)

[57] Ramshaw, L., Marcus, M. : Text chunking using transformation-based
learning. In : Proceedings of the 3rd Workshop on Very Large Corpora,
Cambridge, MA, USA (1995) 84–94

[58] He, K., Zhang, X., Ren, S., Sun, J. : Delving deep into rectifiers : Surpas-
sing human-level performance on imagenet classification. In : 2015 IEEE
International Conference on Computer Vision, ICCV 2015, Santiago, Chile,
December 7-13, 2015. (2015) 1026–1034

[59] Bengio, Y. : Practical recommendations for gradient-based training of deep
architectures. CoRR abs/1206.5533 (2012)

[60] Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin,
Z., Desmaison, A., Antiga, L., Lerer, A. : Automatic differentiation in
pytorch. In : NIPS-W. (2017)

23



[61] Gruslys, A., Munos, R., Danihelka, I., Lanctot, M., Graves, A. : Memory-
efficient backpropagation through time. (2016) 4125–4133

[62] Yeh, A. : More accurate tests for the statistical significance of result diffe-
rences. (In : Proceedings of Coling)
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